ReduceSum.cpp 11.2 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
19 20
 * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
 */
xiaotong committed
21 22 23 24

#include <math.h>
#include "ReduceSum.h"
#include "ReduceSum.cuh"
25
#include "../../XName.h"
xiaotong committed
26 27 28 29

namespace nts{ // namespace nts(NiuTrans.Tensor)

/* 
30 31 32
sum the items along a dimension of the tensor

For a 1-dimensional data array a,
xiaotong committed
33 34
sum = \sum_i (a_i - shift)^power if isExp == false
sum = \sum_i exp((a_i - shift)^power) if isExp == true
35

xiaotong committed
36 37 38 39 40 41 42
>> input - the input tensor
>> output - the output tensor
>> dim - the dimension where the reduction is performed on
>> shift - shift the input
>> ieExp - specify if the exp() is performed
>> power - we perform pow(item_i, power) on each item in the array
*/
43
void _ReduceSum(const XTensor * input, XTensor * output, int dim, const XTensor * shift, DTYPE power, bool isExp)
xiaotong committed
44 45
{
    CheckNTErrors((input->devID == output->devID || (input->devID < 0 && output->devID < 0)), 
46
                  "This code must be run on the same device!");
xiaotong committed
47 48 49 50
    CheckNTErrors((input && output), "Empty input or output tensors!");
    CheckNTErrors((input->order == output->order + 1), "Incorrect tensor sizes!");
    CheckNTErrors((input->order > dim && dim >=0), "Illegal dimension to reduce!");
    CheckNTErrors((input->dataType == output->dataType), "Unmatched data types!");
51
    CheckNTErrors((shift == NULL || XTensor::IsSameShaped(output, shift)), "Incorrect shift tensor size!");
xiaotong committed
52 53 54 55

	int dimRDI = input->order - dim - 1;
    for(int i = 0; i < input->order; i++){
        if(i < dimRDI){
56
            CheckNTErrors((input->dimSizeRDI[i] == output->dimSizeRDI[i]), "Unmatched tensors!");
xiaotong committed
57 58
        }
        else if(i > dimRDI){
59
            CheckNTErrors((input->dimSizeRDI[i] == output->dimSizeRDI[i - 1]), "Unmatched tensors!");
xiaotong committed
60 61 62 63 64
        }
    }

    if(input->devID >= 0){
#ifdef USE_CUDA
65
        _CudaReduceSum(input, output, dim, shift, power, isExp);
xiaotong committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#endif
    }
    else{
        CheckNTErrors((input->dataType == DEFAULT_DTYPE), "TODO!");

        int stride = 1;
        int strideNum = input->dimSizeRDI[dimRDI];
        int blockSize = 1;
        int blockNum = 1;
        for (int i = 0; i < input->order; i++) {
            if (i < dimRDI)
                stride *= input->dimSizeRDI[i];
            else if (i > dimRDI)
                blockNum *= input->dimSizeRDI[i];
        }
        blockSize = stride * strideNum;

        for(int k = 0; k < blockNum; k++){
            DTYPE * ip = (DTYPE*)input->data + blockSize * k;
            DTYPE * op = (DTYPE*)output->data + stride * k;
            DTYPE * sp = shift != NULL ? (DTYPE*)shift->data + stride * k : NULL;
            for(int i = 0; i < stride; i++){
                DTYPE sum = 0;
                DTYPE bias = shift != NULL ? *(sp + i) : 0;
                DTYPE * ipe = ip + blockSize;
                if(isExp){
                    if(bias == 0){
                        if(power == (DTYPE)1.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride)
                                sum += (DTYPE)exp(*ipb);
                        }
                        else if(power == (DTYPE)2.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb);
                                sum += (DTYPE)exp(value * value);
                            }
                        }
                        else if(power == (DTYPE)0.5){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb);
                                sum += (DTYPE)exp(sqrt(value));
                            }
                        }
                        else{
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb);
                                sum += (DTYPE)exp(pow(value, power));
                            }
                        }
                    }
                    else{
                        if(power == (DTYPE)1.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride)
                                sum += (DTYPE)exp(*ipb - bias);
                        }
                        else if(power == (DTYPE)2.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb) - bias;
                                sum += (DTYPE)exp(value * value);
                            }
                        }
                        else if(power == (DTYPE)0.5){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb) - bias;
                                sum += (DTYPE)exp(sqrt(value));
                            }
                        }
                        else{
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb) - bias;
                                sum += (DTYPE)exp(pow(value, power));
                            }
                        }
                    }
                }
                else{
                    if(bias == 0){
                        if(power == (DTYPE)1.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride)
                                sum += *ipb;
                        }
                        else if(power == (DTYPE)2.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb);
                                sum += value * value;
                            }
                        }
                        else if(power == (DTYPE)0.5){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb);
                                sum += (DTYPE)sqrt(value);
                            }
                        }
                        else{
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb);
                                sum += (DTYPE)pow(value, power);
                            }
                        }
                    }
                    else{
                        if(power == (DTYPE)1.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride)
                                sum += *ipb;
                            sum -= strideNum * bias;
                        }
                        else if(power == (DTYPE)2.0){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb) - bias;
                                sum += value * value;
                            }
                        }
                        else if(power == (DTYPE)0.5){
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb) - bias;
                                sum += (DTYPE)sqrt(value);
                            }
                        }
                        else{
                            for(DTYPE * ipb = ip + i; ipb < ipe; ipb += stride){
                                DTYPE value = (*ipb) - bias;
                                sum += (DTYPE)pow(value, power);
                            }
                        }
                    }
                }
                *(op + i) = sum;
            }
        }
    }
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* 
sum the items along a dimension of the tensor (return a XTensor structure)
make a new tensor to keep the result and return it

For a 1-dimensional data array a,
sum = \sum_i (a_i - shift)^power if isExp == false
sum = \sum_i exp((a_i - shift)^power) if isExp == true

>> input - the input tensor
>> dim - the dimension where the reduction is performed on
>> shift - shift the input
>> ieExp - specify if the exp() is performed
>> power - we perform pow(item_i, power) on each item in the array
<< return - the sum along a dimension of the tensor
*/
XTensor ReduceSum(const XTensor &input, int dim, const XTensor &shift, DTYPE power, bool isExp)
{
215
    CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
216 217 218
	
    int order = input.order - 1;
    int * dimSize = new int[order];
219
    for(int i = 0; i < order; i++){
220 221
        if(i < dim)
            dimSize[i] = input.dimSize[i];
222
        else if(i >= dim)
223 224 225
            dimSize[i] = input.dimSize[i + 1];
    }

226 227
    float dr = (!input.isSparse) ? 1.0F : input.denseRatio;
    XTensor output(order, dimSize, input.dataType, dr, input.devID, input.mem);
228
    output.SetTMPFlag();
229 230 231 232 233 234

    /* call _ReduceSum function */
    _ReduceSum(&input, &output, dim, &shift, power, isExp);
            
    /* tensor connection */
    XLink::MakeLink(&input, &shift, &output, REDUCE_REDUCESUM);
235
    XLink::AddParamToHeadInt(&output, dim);
236
    XLink::AddParamToHead(&output, power);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    XLink::AddParamToHeadBool(&output, isExp);

    /* destroy variables */
    delete[] dimSize;

    return output;
}

/* 
sum the items along a dimension of the tensor (return a XTensor structure)
make a new tensor to keep the result and return it

For a 1-dimensional data array a,
sum = \sum_i (a_i)^power if isExp == false
sum = \sum_i exp((a_i)^power) if isExp == true

>> input - the input tensor
>> dim - the dimension where the reduction is performed on
>> ieExp - specify if the exp() is performed
>> power - we perform pow(item_i, power) on each item in the array
<< return - the sum along a dimension of the tensor
*/
XTensor ReduceSum(const XTensor &input, int dim, DTYPE power, bool isExp)
{
    CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
	
    int order = input.order - 1;
    int * dimSize = new int[order];
    for(int i = 0; i < order; i++){
        if(i < dim)
            dimSize[i] = input.dimSize[i];
        else if(i >= dim)
            dimSize[i] = input.dimSize[i + 1];
    }

    float dr = (!input.isSparse) ? 1.0F : input.denseRatio;
    XTensor output(order, dimSize, input.dataType, dr, input.devID, input.mem);
274
    output.SetTMPFlag();
275 276 277 278 279 280 281 282 283

    /* call _ReduceSum function */
    _ReduceSum(&input, &output, dim, NULL, power, isExp);
            
    /* tensor connection */
    XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCESUM);
    XLink::AddParamToHeadInt(&output, dim);
    XLink::AddParamToHead(&output, power);
    XLink::AddParamToHeadBool(&output, isExp);
284 285

    /* destroy variables */
xiaotong committed
286
    delete[] dimSize;
287 288 289 290

    return output;
}

xiaotong committed
291
} // namespace nts(NiuTrans.Tensor)