FNNLM.cpp 36.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2018, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 *
 * This is a simple impelementation of the feed-forward network-baesd language
 * model (FNNLM). See more details about FNNLM in
 * "A Neural Probabilistic Language Model" by Bengio et al.
23
 * Journal of Machine Learning Research 3 (2003) 1137–1155
24 25 26 27 28 29
 *
 * $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-06-22
 */

#include <math.h>
#include "FNNLM.h"
30 31 32 33 34
#include "../../tensor/XGlobal.h"
#include "../../tensor/XUtility.h"
#include "../../tensor/XDevice.h"
#include "../../tensor/function/FHeader.h"
#include "../../network/XNet.h"
35

xiaotong committed
36
namespace fnnlm
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
{

#define MAX_NAME_LENGTH 1024
#define MAX_LINE_LENGTH_HERE 1024 * 32

char trainFN[MAX_NAME_LENGTH] = "";   // file name of the training data
char modelFN[MAX_NAME_LENGTH] = "";   // file name of the FNN model
char testFN[MAX_NAME_LENGTH] = "";    // file name of the test data
char outputFN[MAX_NAME_LENGTH] = "";  // file name of the result data
    
float learningRate = 0.01F;           // learning rate
int nStep = 10000000;                   // max learning steps (or model updates)
int nEpoch = 10;                      // max training epochs
float minmax = 0.08F;                 // range [-p,p] for parameter initialization
int sentBatch = 0;                    // batch size at the sentence level
int wordBatch = 1;                    // batch size at the word level
bool shuffled = false;                // shuffled the training data file or not
54
bool autoDiff = false;                // indicator of automatic differentiation
55 56 57 58 59

void LoadArgs(int argc, const char ** argv, FNNModel &model);
void Init(FNNModel &model);
void Check(FNNModel &model);
void Copy(FNNModel &tgt, FNNModel &src);
60
void Clear(FNNModel &model, bool isNodeGrad);
61 62 63
void InitModelTensor1D(XTensor &tensor, int num, FNNModel &model);
void InitModelTensor2D(XTensor &tensor, int rowNum, int colNum, FNNModel &model);
void Train(const char * train, bool isShuffled, FNNModel &model);
64
void Update(FNNModel &model, FNNModel &grad, float epsilon, bool isNodeGrad);
65 66 67 68 69 70 71 72 73 74 75
float GetProb(XTensor &output, XTensor &gold, XTensor * wordProbs = NULL);
void Dump(const char * fn, FNNModel &model);
void Read(const char * fn, FNNModel &model);
void Test(const char * test, const char * result, FNNModel &model);
int  LoadNGrams(FILE * file, int n, NGram * ngrams, int sentNum, int wordNum);
void InitZeroOneTensor2D(XTensor &tensor, int rowNum, int colNum, int * rows, int * cols, 
                         int itemNum, int devID, XMem * mem);
void MakeWordBatch(XTensor &batch, NGram * ngrams, int ngramNum, int n, int vSize, int devID, XMem * mem);
void Forward(XTensor inputs[], XTensor &output, FNNModel &model, FNNNet &net);
void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NAME loss, 
              FNNModel &model, FNNModel &grad, FNNNet &net);
76
void ForwardAutoDiff(XTensor inputs[], XTensor &output, FNNModel &model);
77
void ForwardAutoDiff(NGram * ngrams, int batch, XTensor &output, FNNModel &model);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

/* 
entry of the program 
>> argc - number of the arguments
>> argv - pointers to the arguments
<< return - error code

arguments:
 -train S: specify training data file name
 -model S: specify model file name
 -test S: specify test data file name
 -output S: specify result data file name
 -n D: order of the language model
 -eSize D: embedding size
 -vSize D: vocabulary size
 -hdepth D: number of stacked hidden layers
 -hsize D: size of each hidden layer
 -lrate F: learning rate
 -nstep D: maximum number of model updates
 -nepoch D: maximum number of training epochs
 -batch D: batch size (how many sentences)
 -wbatch D: batch size at the word level
            (how many words)
 -shuffle: shuffle the training data
 -devid D: the id of the device used
103
           -1: CPU, >=0: GPUs
104
 -mempool: use memory pools for memory management
105
 -autodiff: use automatic differentiation for training
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
 
 where S=string, D=integer and F=float.
 All words in the training and test data files
 are encoded as thire indeces in the vocabulary.
 E.g.,
 0 29 2 11 1
 might be a line of the file.
*/
int FNNLMMain(int argc, const char ** argv)
{
    if(argc == 0)
        return 1;

    FNNModel model;

    /* load arguments */
    LoadArgs(argc, argv, model);

    /* check the setting */
    Check(model);

    /* initialize model parameters */
    Init(model);

    /* learn model parameters */
    if(strcmp(trainFN, ""))
        Train(trainFN, shuffled, model);

    /* save the final model */
    if(strcmp(modelFN, "") && strcmp(trainFN, ""))
        Dump(modelFN, model);

    /* load the model if neccessary */
    if(strcmp(modelFN, ""))
        Read(modelFN, model);

    /* test the model on the new data */
    if(strcmp(testFN, "") && strcmp(outputFN, ""))
        Test(testFN, outputFN, model);

    return 0;
}

/* 
load arguments 
>> argc - number of the arguments
>> argv - pointers to the arguments
>> model - the fnn model
*/
void LoadArgs(int argc, const char ** argv, FNNModel &model)
{
157
    fprintf(stderr, "args:\n");
158
    for(int i = 0; i < argc; i++){
159
        if(!strcmp(argv[i], "-train") && i + 1 < argc){
160
            strcpy(trainFN, argv[i + 1]);
161 162 163
            fprintf(stderr, " -train=%s\n", argv[i + 1]);
        }
        if(!strcmp(argv[i], "-model") && i + 1 < argc){
164
            strcpy(modelFN, argv[i + 1]);
165 166 167
            fprintf(stderr, " -model=%s\n", argv[i + 1]);
        }
        if(!strcmp(argv[i], "-test") && i + 1 < argc){
168
            strcpy(testFN, argv[i + 1]);
169 170 171
            fprintf(stderr, " -test=%s\n", argv[i + 1]);
        }
        if(!strcmp(argv[i], "-output") && i + 1 < argc){
172
            strcpy(outputFN, argv[i + 1]);
173 174 175
            fprintf(stderr, " -output=%s\n", argv[i + 1]);
        }
        if(!strcmp(argv[i], "-n") && i + 1 < argc){
176
            model.n = atoi(argv[i + 1]);
177 178 179
            fprintf(stderr, " -n=%d\n", model.n);
        }
        if(!strcmp(argv[i], "-esize") && i + 1 < argc){
180
            model.eSize = atoi(argv[i + 1]);
181 182 183
            fprintf(stderr, " -esize=%d\n", model.eSize);
        }
        if(!strcmp(argv[i], "-vsize") && i + 1 < argc){
184
            model.vSize = atoi(argv[i + 1]);
185 186 187
            fprintf(stderr, " -vsize=%d\n", model.vSize);
        }
        if(!strcmp(argv[i], "-hdepth") && i + 1 < argc){
188
            model.hDepth = atoi(argv[i + 1]);
189 190 191
            fprintf(stderr, " -hdepth=%d\n", model.hDepth);
        }
        if(!strcmp(argv[i], "-hsize") && i + 1 < argc){
192
            model.hSize = atoi(argv[i + 1]);
193 194 195
            fprintf(stderr, " -hsize=%d\n", model.hSize);
        }
        if(!strcmp(argv[i], "-lrate") && i + 1 < argc){
196
            learningRate = (float)atof(argv[i + 1]);
197 198 199
            fprintf(stderr, " -lrate=%f\n", learningRate);
        }
        if(!strcmp(argv[i], "-nstep") && i + 1 < argc){
200
            nStep = atoi(argv[i + 1]);
201 202 203
            fprintf(stderr, " -nstep=%d\n", nStep);
        }
        if(!strcmp(argv[i], "-nepoch") && i + 1 < argc){
204
            nEpoch = atoi(argv[i + 1]);
205 206 207
            fprintf(stderr, " -nepoch=%d\n", nEpoch);
        }
        if(!strcmp(argv[i], "-minmax") && i + 1 < argc){
208
            minmax = (float)fabs(atof(argv[i + 1]));
209 210 211
            fprintf(stderr, " -minmax=%f\n", minmax);
        }
        if(!strcmp(argv[i], "-batch") && i + 1 < argc){
212
            sentBatch = atoi(argv[i + 1]);
213 214 215
            fprintf(stderr, " -batch=%d\n", sentBatch);
        }
        if(!strcmp(argv[i], "-wbatch") && i + 1 < argc){
216
            wordBatch = atoi(argv[i + 1]);
217 218 219
            fprintf(stderr, " -wbatch=%d\n", wordBatch);
        }
        if(!strcmp(argv[i], "-shuffle")){
220
            shuffled = true;
221 222 223
            fprintf(stderr, " -shuffle=true\n");
        }
        if(!strcmp(argv[i], "-autodiff")){
224
            autoDiff = true;
225 226 227
            fprintf(stderr, " -autodiff=true\n");
        }
        if(!strcmp(argv[i], "-dev") && i + 1 < argc){
228
            model.devID = atoi(argv[i + 1]);
229 230
            fprintf(stderr, " -dev=%d\n", model.devID);
        }
231 232 233
    }

    for(int i = 0; i < argc; i++){
234 235
        if (!strcmp(argv[i], "-mem"))
            model.mem = new XMem(model.devID, FREE_ON_THE_FLY, 256 * MILLION, 512, 256 * MILLION);
236 237 238 239 240 241 242 243
    }
}

/* check model settings */
void Check(FNNModel &model)
{
    CheckErrors(model.n > 0 && model.n <= MAX_N_GRAM, "The LM order is out of range (use -n)!");
    CheckErrors(model.vSize > 0, "no vocabulary size found (use -vsize)!");
xiaotong committed
244
    CheckErrors(model.eSize > 0, "no embedding size found (use -esize)!");
245 246 247 248 249
}

/* make a hard copy of the fnn model */
void Copy(FNNModel &tgt, FNNModel &src)
{
250
    InitTensorV2(&tgt.embeddingW, &src.embeddingW);
251
    for(int i = 0; i < MAX_HIDDEN_NUM; i++){
252 253
        InitTensorV2(&tgt.hiddenW[i], &src.hiddenW[i]);
        InitTensorV2(&tgt.hiddenB[i], &src.hiddenB[i]);
254
    }
255 256
    InitTensorV2(&tgt.outputW, &src.outputW);
    InitTensorV2(&tgt.outputB, &src.outputB);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

    tgt.n = src.n;
    tgt.eSize = src.eSize;
    tgt.hDepth = src.hDepth;
    tgt.hSize = src.hSize;
    tgt.vSize = src.vSize;
    tgt.devID = src.devID;
    tgt.useMemPool = src.useMemPool;
    if(src.mem != NULL){
        tgt.mem = new XMem(src.mem->devID, src.mem->mode, 
                           src.mem->maxBlockSize, src.mem->blockNum, 
                           src.mem->bufSize);
    }
}

272 273 274 275 276 277 278
/* 
reset model parameters 
>> model - the model whose parameter (gradient) is set to 0
>> isNodeGrad - indicates whether the tensor node keeps the 
                gradient information
*/
void Clear(FNNModel &model, bool isNodeGrad)
279
{
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    if (isNodeGrad) {
        if(model.embeddingW.grad != NULL)
            model.embeddingW.grad->SetZeroAll();
        for (int i = 0; i < MAX_HIDDEN_NUM; i++) {
            if(model.hiddenW[i].grad != NULL)
                model.hiddenW[i].grad->SetZeroAll();
            if(model.hiddenB[i].grad != NULL)
                model.hiddenB[i].grad->SetZeroAll();
        }
        if(model.outputW.grad != NULL)
            model.outputW.grad->SetZeroAll();
        if(model.outputB.grad != NULL)
            model.outputB.grad->SetZeroAll();
    }
    else {
        model.embeddingW.SetZeroAll();
        for (int i = 0; i < MAX_HIDDEN_NUM; i++) {
            model.hiddenW[i].SetZeroAll();
            model.hiddenB[i].SetZeroAll();
        }
        model.outputW.SetZeroAll();
        model.outputB.SetZeroAll();
302 303 304 305 306 307 308 309 310 311 312
    }
}

/* 
initialize a 1d tensor using the fnn model setting 
>> tensor - the tensor to initialize
>> num - number of items
>> model - the fnn model
*/
void InitModelTensor1D(XTensor &tensor, int num, FNNModel &model)
{
313
    InitTensor1DV2(&tensor, num, X_FLOAT, model.devID);
314 315 316 317 318 319 320 321 322 323 324
}

/* 
initialize a 2d tensor using the fnn model setting 
>> tensor - the tensor to initialize
>> rowNum - number of rows
>> colNum - number of columns
>> model - the fnn model
*/
void InitModelTensor2D(XTensor &tensor, int rowNum, int colNum, FNNModel &model)
{
325
    InitTensor2DV2(&tensor, rowNum, colNum, X_FLOAT, model.devID);
326 327 328 329 330 331 332 333
}


/* initialize the model */
void Init(FNNModel &model)
{
    /* create embedding parameter matrix: vSize * eSize */
    InitModelTensor2D(model.embeddingW, model.vSize, model.eSize, model);
334 335
    model.embeddingW.SetVarFlag();

336 337 338 339 340 341 342 343
    /* create hidden layer parameter matrics */
    for(int i = 0; i < model.hDepth; i++){
        /* hidden layer parameter matrix: (n-1)eSize * hsize if it is the first layer
                                           hsize * hsize otherwise */
        if(i == 0)
            InitModelTensor2D(model.hiddenW[i], (model.n - 1) * model.eSize, model.hSize, model);
        else
            InitModelTensor2D(model.hiddenW[i], model.hSize, model.hSize, model);
344 345
        model.hiddenW[i].SetVarFlag();

346 347
        /* bias term: a row vector of hSize entries */
        InitModelTensor1D(model.hiddenB[i], model.hSize, model);
348
        model.hiddenB[i].SetVarFlag();
349 350 351 352 353
    }
    
    /* create the output layer parameter matrix and bias term */
    int iSize = model.hDepth == 0 ? (model.n - 1) * model.eSize : model.hSize;
    InitModelTensor2D(model.outputW, iSize, model.vSize, model);
354 355
    model.outputW.SetVarFlag();

356
    InitModelTensor1D(model.outputB, model.vSize, model);
357
    model.outputB.SetVarFlag();
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    
    /* then, we initialize model parameters using a uniform distribution in range
       of [-minmax, minmax] */
    model.embeddingW.SetDataRand(-minmax, minmax);
    model.outputW.SetDataRand(-minmax, minmax);
    for(int i = 0; i < model.hDepth; i++)
        model.hiddenW[i].SetDataRand(-minmax, minmax);
    
    /* all bias terms are set to zero */
    model.outputB.SetZeroAll();
    for(int i = 0; i < model.hDepth; i++)
        model.hiddenB[i].SetZeroAll();
}
    
/*
 shuffle lines of the file
 >> srcFile - the source file to shuffle
 >> tgtFile - the resulting file
 */
void Shuffle(const char * srcFile, const char * tgtFile)
{
    char * line = new char[MAX_LINE_LENGTH_HERE];
#ifndef WIN32
    sprintf(line, "shuf %s > %s", srcFile, tgtFile);
    system(line);
#else
    ShowErrors("Cannot shuffle the file on WINDOWS systems!");
#endif
    delete[] line;
    
}
    
char lineBuf[MAX_LINE_LENGTH_HERE];
int wordBuf[MAX_LINE_LENGTH_HERE];

/* 
train the model with the standard SGD method
>> train - training data file
>> isShuffled - shuffle the data file or not
>> model - the fnn model
*/
void Train(const char * train, bool isShuffled, FNNModel &model)
{
    char name[MAX_NAME_LENGTH];
    
    /* shuffle the data */
    if(isShuffled){
        sprintf(name, "%s-tmp", train);
        Shuffle(train, name);
    }
    else
        strcpy(name, train);
    
    int epoch = 0;
    int step = 0;
    int wordCount = 0;
    int wordCountTotal = 0;
    int ngramNum = 1;
    float loss = 0;
    bool isEnd = false;
    
    NGram * ngrams = new NGram[MAX_LINE_LENGTH_HERE];

    /* make a model to keep gradients */
    FNNModel grad;
    Copy(grad, model);

425 426 427
    /* XNet for automatic differentiation */
    XNet autoDiffer;

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    double startT = GetClockSec();
    
    /* iterate for a number of epochs */
    for(epoch = 0; epoch < nEpoch; epoch++){

        /* data file */
        FILE * file = fopen(name, "rb");
        CheckErrors(file, "Cannot open the training file");

        wordCount = 0;
        loss = 0;
        ngramNum = 1;

        while(ngramNum > 0){
            
            /* load a minibatch of ngrams */
            ngramNum = LoadNGrams(file, model.n, ngrams, sentBatch, wordBatch);

            if (ngramNum <= 0)
                break;

            /* previous n - 1 words */
            XTensor inputs[MAX_N_GRAM];

            /* the predicted word */
            XTensor output;

            /* the gold standard */
            XTensor gold;

458 459 460
            /* the loss tensor */
            XTensor lossTensor;

461 462 463 464 465 466 467
            /* make the input tensor for position i */
            for(int i = 0; i < model.n - 1; i++)
                MakeWordBatch(inputs[i], ngrams, ngramNum, i, model.vSize, model.devID, model.mem);

            /* make the gold tensor */
            MakeWordBatch(gold, ngrams, ngramNum, model.n - 1, model.vSize, model.devID, model.mem);

468 469 470 471 472
            if(!autoDiff){
                /* prepare an empty network for building the fnn */
                FNNNet net;

                /* gradident = 0 */
473
                Clear(grad, false);
474

475 476
                /* forward computation */
                Forward(inputs, output, model, net);
477

478 479 480 481 482
                /* backward computation to obtain gradients */
                Backward(inputs, output, gold, CROSSENTROPY, model, grad, net);

                /* update model parameters */
                Update(model, grad, learningRate, false);
483 484 485 486

                /* get probabilities */
                float prob = GetProb(output, gold);
                loss -= prob;
487 488
            }
            else{
489 490 491
                /* gradient = 0 */
                Clear(model, true);

492
                /* forward + backward process */
493
                ForwardAutoDiff(ngrams, ngramNum, output, model);
494
                lossTensor = CrossEntropy(output, gold);
495 496

                /* automatic differentiation */
497
                autoDiffer.Backward(lossTensor);
498

499 500
                /* update model parameters */
                Update(model, grad, learningRate, true);
501 502 503 504

                /* get probabilities */
                float prob = ReduceSumAll(lossTensor);
                loss += prob;
505
            }
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
            wordCount += ngramNum;
            wordCountTotal += ngramNum;
            
            if(++step >= nStep){
                isEnd = true;
                break;
            }

            if (step % 100 == 0) {
                double elapsed = GetClockSec() - startT;
                XPRINT5(0, stderr, "[INFO] elapsed=%.1fs, step=%d, epoch=%d, ngram=%d, ppl=%.3f\n",
                           elapsed, step, epoch + 1, wordCountTotal, exp(loss / wordCount));
            }
        }

        fclose(file);
        
        if(isEnd)
            break;
526 527

        Test(testFN, outputFN, model);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    }

    double elapsed = GetClockSec() - startT;
    
    XPRINT5(0, stderr, "[INFO] elapsed=%.1fs, step=%d, epoch=%d, ngram=%d, ppl=%.3f\n", 
               elapsed, step, epoch, wordCountTotal, exp(loss / wordCount));
    XPRINT3(0, stderr, "[INFO] training finished (took %.1fs, step=%d and epoch=%d)\n", 
               elapsed, step, epoch);
    
    delete[] ngrams;
}

/* 
update the model parameters using the delta rule
>> model - the model to update
>> grad - gradients
>> epsilon - learning rate
545
>> isNodeGrad - indicates whether the gradient is associated with the node
546
*/
547
void Update(FNNModel &model, FNNModel &grad, float epsilon, bool isNodeGrad)
548
{
549 550
    TensorList paraList(10);
    TensorList gradList(10);
551 552 553 554 555 556 557 558 559 560

    paraList.Add(&model.outputW);
    paraList.Add(&model.outputB);

    for (int i = 0; i < model.hDepth; i++) {
        paraList.Add(&model.hiddenW[i]);
        paraList.Add(&model.hiddenB[i]);
    }

    paraList.Add(&model.embeddingW);
561 562 563 564 565 566 567 568 569 570 571 572 573

    if(!isNodeGrad){
        gradList.Add(&grad.outputW);
        gradList.Add(&grad.outputB);

        for (int i = 0; i < model.hDepth; i++) {
            gradList.Add(&grad.hiddenW[i]);
            gradList.Add(&grad.hiddenB[i]);
        }
;
        gradList.Add(&grad.embeddingW);
    }
    else{
xiaotong committed
574 575
        gradList.Add(model.outputW.grad);
        gradList.Add(model.outputB.grad);
576 577

        for (int i = 0; i < model.hDepth; i++) {
xiaotong committed
578 579
            gradList.Add(model.hiddenW[i].grad);
            gradList.Add(model.hiddenB[i].grad);
580 581
        }

xiaotong committed
582
        gradList.Add(model.embeddingW.grad);
583
    }
584 585 586 587 588 589 590 591 592 593 594 595 596 597

    for (int i = 0; i < paraList.count; i++) {
        XTensor * para = (XTensor*)paraList.GetItem(i);
        XTensor * paraGrad = (XTensor*)gradList.GetItem(i);

        /* the delta rule */
        _Sum(para, paraGrad, para, -epsilon);
    }
}
  
/*
get prediction probabilites of the gold words
>> output - output probabilities
>> gold - gold standard
xiaotong committed
598
>> wordPobs - probability of each word
599 600 601 602 603
<< return - probability of the batch
*/
float GetProb(XTensor &output, XTensor &gold, XTensor * wordProbs)
{
    XTensor probs;
604
    InitTensorV2(&probs, &output);
605 606
    
    /* probs[i,j] = output[i,j] * gold[i,j] */
607
    Multiply(output, gold, probs);
608 609 610

    /* probability of each word */
    XTensor wprobs;
611
    InitTensor1DV2(&wprobs, output.GetDim(0), output.dataType, output.devID);
612
    ReduceSum(probs, wprobs, 1);
613
    if(wordProbs != NULL)
614
        CopyValues(wprobs, *wordProbs);
615 616 617 618 619 620 621 622 623 624

    /* reshape the tensor to fit it into the reduce procedure 
       TODO: XTensor supports scalars */
    int dims[2];
    dims[0] = 1;
    dims[1] = probs.unitNum;
    probs.Reshape(2, dims);
 
    /* probability for the batch */
    XTensor result;
625
    InitTensor1DV2(&result, 1, X_FLOAT, output.devID);
626
    ReduceSum(probs, result, 1);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    
    return result.Get1D(0);
}

int pin = 0;
int wordBufCount = 0;

/*
load a minibatch of ngrams
>> file - data file
>> n - order of the language model
>> ngrams - the loaded ngrams
>> sentNum - maximum sentences kept in the minibatch
>> wordNum - maximum words kept in the minibatch
*/
int LoadNGrams(FILE * file, int n, NGram * ngrams, int sentNum, int wordNum)
{
    int num = 0;
    int lineNum = 0;
    while(pin > 0 || fgets(lineBuf, MAX_LINE_LENGTH_HERE - 1, file)){
        if(pin <= 0){
            int len = (int)strlen(lineBuf);

xiaotong committed
650
            while(lineBuf[len - 1] == '\r' || lineBuf[len - 1] == '\n'){
651
                lineBuf[len - 1] = 0;
xiaotong committed
652 653
                len--;
            }
654 655 656 657 658 659 660 661 662 663

            len = (int)strlen(lineBuf);
            if(len == 0)
                continue;
        
            /* how many characters are in a word */
            int wSize = 0;
        
            /* how many words are in the sentence */
            int wNum = 0;
xiaotong committed
664
            int i = 0;
665

xiaotong committed
666
            for(i = pin; i < len; i++){
667
                /* load word (id) seperated by space or tab */
xiaotong committed
668
                if((lineBuf[i] == ' ' || lineBuf[i] == '\t') && wSize > 0){
669 670 671 672 673 674 675 676
                    lineBuf[i] = 0;
                    wordBuf[wNum++] = atoi(lineBuf + i - wSize);
                    wSize = 0;
                }
                else
                    wSize++;
            }

xiaotong committed
677 678 679
            if(wSize > 0)
                wordBuf[wNum++] = atoi(lineBuf + i - wSize);

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
            wordBufCount = wNum;
            lineNum++;
        }
        else
            lineNum = 1;

        int i = -MAX_INT;

        /* create ngrams */
        for(i = MAX(pin, n - 1); i < wordBufCount - 1; i++){
            memcpy(ngrams[num++].words, wordBuf + i - n + 1, sizeof(int) * n);
            if(num >= wordNum)
                break;
        }

        /* set a finished flag if we reach the end of the sentence*/
        if(i >= wordBufCount - 1){
            pin = 0;
            wordBufCount = 0;
        }
        /* record where to start next time if we break in the middle */
        else{
            pin = i + 1;
        }
        
        if((sentNum > 0 && lineNum >= sentNum) || num >= wordNum)
            break;
    }
    
    return num;
}

/*
make a 2d tensor in zero-one representation
The indexed cell is set to 1, and 0 otherwise.
>> tensor - the tensor to initialize
>> rowNum - number of rows
>> colNum - number of columns
>> rows - row index
>> cols - column index
>> itemNum - number of non-zero items
>> devID - device id
>> mem - memory pool
*/
xuchen committed
724 725
void InitZeroOneTensor2D(XTensor &tensor, int rowNum, int colNum, int * rows, int * cols, 
                         int itemNum, int devID, XMem * mem)
726
{
727
    InitTensor2DV2(&tensor, rowNum, colNum, X_FLOAT, devID);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

    tensor.SetZeroAll();

    /* set none-zero cells */
    for(int i = 0; i < itemNum; i++)
        tensor.Set2D(1.0F, rows[i], cols[i]);
}

/*
make a tensor that encodes a batch of words
>> batch - the tensor encoding a batch of words
>> ngrams - the ngram batch
>> ngramNum - batch size
>> n - indicate which word is encode for each ngram
>> vSize - vocabulary size
>> devID - device id
>> mem - memory pool
*/
void MakeWordBatch(XTensor &batch, NGram * ngrams, int ngramNum, int n, int vSize, int devID, XMem * mem)
{
    int * rows = new int[ngramNum];
    int * cols = new int[ngramNum];

    for(int i = 0; i < ngramNum; i++){
        rows[i] = i;
        cols[i] = ngrams[i].words[n];
    }

    InitZeroOneTensor2D(batch, ngramNum, vSize, rows, cols, ngramNum, devID, mem);

    delete[] rows;
    delete[] cols;
}

/*
forward procedure
>> inputs - input word representations
>> output - output probability
>> model - the fnn model
>> net - the network that keeps the internal tensors generated in the process
*/
void Forward(XTensor inputs[], XTensor &output, FNNModel &model, FNNNet &net)
{
    int batchSize = -1;
    int n = model.n;
    int depth = model.hDepth;
774
    TensorList eList(n - 1);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

    /* previoius n - 1 words */
    for(int i = 0; i < n - 1; i++){
        XTensor &input = inputs[i];
        XTensor &w = model.embeddingW;
        XTensor &embedding = net.embeddings[i];

        if(batchSize == -1)
            batchSize = input.dimSize[0];
        else{
            CheckErrors(batchSize == input.dimSize[0], "Wrong input word representations!");
        }

        /* embedding output tensor of position i */
        InitModelTensor2D(embedding, batchSize, model.eSize, model);

        /* generate word embedding of position i:
           embedding = input * w   */
793
        MatrixMul(input, X_NOTRANS, w, X_NOTRANS, embedding);
794 795 796 797 798 799 800

        eList.Add(&net.embeddings[i]);
    }

    /* concatenate word embeddings
       embeddingcat = cat(embedding_0...embedding_{n-1}) */
    InitModelTensor2D(net.embeddingCat, batchSize, (n - 1) * model.eSize, model);
801
    Concatenate(eList, net.embeddingCat, 1);
802 803 804 805 806 807 808 809 810 811 812 813 814 815

    /* go over each hidden layer */
    for(int i = 0; i < depth; i++){
        XTensor &h_pre = i == 0 ? net.embeddingCat : net.hiddens[i - 1];
        XTensor &w = model.hiddenW[i];
        XTensor &b = model.hiddenB[i];
        XTensor &h = net.hiddens[i];
        XTensor &s = net.hiddenStates[i];

        InitModelTensor2D(h, batchSize, model.hSize, model);
        InitModelTensor2D(s, batchSize, model.hSize, model);

        /* generate hidden states of layer i: 
           s = h_pre * w    */
816
        MatrixMul(h_pre, X_NOTRANS, w, X_NOTRANS, s);
817 818 819

        /* make a 2d tensor for the bias term */
        XTensor b2D;
820
        InitTensorV2(&b2D, &s);
821
        Unsqueeze(b, b2D, 0, batchSize);
822 823 824 825 826

        /* introduce bias term:
           s = s + b
           NOTE: the trick here is to extend b to a 2d tensor
                 to fit into the 2d representation in tensor summation */
827
        Sum(s, b2D, s);
828 829 830

        /* pass the state through the hard tanh function:
           h = tanh(s) */
831
        HardTanH(s, h);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
    }

    /* generate the output Pr(w_{n-1}|w_0...w_{n-2}):
       y = softmax(h_last * w) 
       Note that this is the implementation as that in Bengio et al.' paper.
       TODO: we add bias term here */
    {
        XTensor &h_last = depth > 0 ? net.hiddens[depth - 1] : net.embeddingCat;
        XTensor &w = model.outputW;
        XTensor &b = model.outputB;
        XTensor &s = net.stateLast;
        XTensor &y = output;

        InitModelTensor2D(s, batchSize, model.vSize, model);
        InitModelTensor2D(y, batchSize, model.vSize, model);

        /* s = h_last * w  */
849
        MatrixMul(h_last, X_NOTRANS, w, X_NOTRANS, s);
850 851

        XTensor b2D;
852
        InitTensorV2(&b2D, &s);
853
        Unsqueeze(b, b2D, 0, batchSize);
854

855
        Sum(s, b2D, s);
856 857

        /* y = softmax(s) */
858
        LogSoftmax(s, y, 1);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    }
}

/*
backward procedure
>> inputs - input word representations
>> output - output probability
>> gold - gold standard
>> loss - loss function name
>> model - the fnn model
>> grad - the model that keeps the gradient information
>> net - the network that keeps the internal tensors generated in the process
*/
void Backward(XTensor inputs[], XTensor &output, XTensor &gold, LOSS_FUNCTION_NAME loss, 
              FNNModel &model,  FNNModel &grad, FNNNet &net)
{
    int batchSize = output.GetDim(0);
    int n = model.n;
    int depth = model.hDepth;

    /* back-propagation for the output layer */
    XTensor &y = output;
    XTensor &s = net.stateLast;
    XTensor &x = depth > 0 ? net.hiddens[depth - 1] : net.embeddingCat;
    XTensor &w = model.outputW;
    XTensor &dedw = grad.outputW;
    XTensor &dedb = grad.outputB;
    XTensor deds(&y);
    XTensor dedx(&x);

    /* for y = softmax(s), we get dE/ds
        where E is the error function (define by loss) */
891
    _LogSoftmaxBackward(&gold, &y, &s, NULL, &deds, NULL, 1, loss);
892 893 894 895 896 897 898 899

    /* for s = x * w, we get 
       dE/w_{i,j} = dE/ds_j * ds/dw_{i,j} 
                  = dE/ds_j * x_{i}
       (where i and j are the row and column indices, and
        x is the top most hidden layer)
       so we know 
       dE/dw = x^T * dE/ds */
900
    MatrixMul(x, X_TRANS, deds, X_NOTRANS, dedw);
901 902 903

    /* gradient of the bias: dE/db = dE/ds * 1 = dE/ds
    specifically dE/db_{j} = \sum_{i} dE/ds_{i,j} */
904
    ReduceSum(deds, dedb, 0);
905 906 907 908 909 910

    /* then, we compute 
       dE/dx_{j} = \sum_j' (dE/ds_{j'} * ds_{j'}/dx_j) 
                 = \sum_j' (dE/ds_{j'} * w_{j, j'})
       i.e., 
       dE/dx = dE/ds * w^T */
911
    MatrixMul(deds, X_NOTRANS, w, X_TRANS, dedx);
912 913 914 915 916

    XTensor &gradPassed = dedx;
    XTensor dedsHidden;
    XTensor dedxBottom;
    if (depth > 0)
917 918
        InitTensorV2(&dedsHidden, &dedx);
    InitTensorV2(&dedxBottom, &net.embeddingCat);
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

    /* back-propagation from top to bottom in the stack of hidden layers
       for each layer, h = f(s)
                       s = x * w + b */
    for (int i = depth - 1; i >= 0; i--) {
        XTensor &h = net.hiddens[i];
        XTensor &s = net.hiddenStates[i];
        XTensor &x = i == 0 ? net.embeddingCat : net.hiddenStates[i - 1];
        XTensor &w = model.hiddenW[i];
        XTensor &dedh = gradPassed;  // gradient passed though the previous layer
        XTensor &dedx = i == 0 ? dedxBottom : dedh;
        XTensor &deds = dedsHidden;
        XTensor &dedw = grad.hiddenW[i];
        XTensor &dedb = grad.hiddenB[i];
        
        /* backpropagation through the activation fucntion: 
           dE/ds = dE/dh * dh/ds */
936
        _HardTanHBackward(&h, &s, &dedh, &deds);
937 938

        /* gradient of the weight: dE/dw = x^T * dE/ds   */
939
        MatrixMul(x, X_TRANS, deds, X_NOTRANS, dedw);
940 941 942

        /* gradient of the bias: dE/db = dE/ds * 1 = dE/ds
           specifically dE/db_{j} = \sum_{i} dE/ds_{i,j} */
943
        ReduceSum(deds, dedb, 0);
944 945

        /* gradient of the input: dE/dx = dE/ds * w^T    */
946
        MatrixMul(deds, X_NOTRANS, w, X_TRANS, dedx);
947 948

        if (i > 0)
949
            CopyValues(dedx, gradPassed);
950 951
    }

952
    TensorList eList(n - 1);
953 954 955

    /* back-propagation for the embedding layer */
    for (int i = 0; i < n - 1; i++) {
956
        XTensor * dedy = NewTensor2DV2(batchSize, model.eSize, X_FLOAT, model.devID);
957 958 959 960 961 962 963
        eList.Add(dedy);
    }

    /* gradient of the concatenation of the embedding layers */
    XTensor &dedyCat = depth > 0 ? dedxBottom : dedx;

    /* split the concatenation of gradients of the embeddings */
964
    Split(dedyCat, eList, 1, n - 1);
965 966 967 968 969 970 971 972 973 974

    /* go over for each word */
    for (int i = 0; i < n - 1; i++) {
        XTensor * dedy = (XTensor*)eList.GetItem(i);
        XTensor &x = inputs[i];
        XTensor &dedw = grad.embeddingW;

        /* gradient of the embedding weight: dE/dw += x^T * dE/dy 
           NOTE that we accumulate dE/dw here because the matrix w
           is shared by several layers (or words) */
975
        MatrixMul(x, X_TRANS, *dedy, X_NOTRANS, dedw, 1.0F, 1.0F);
976 977 978 979 980

        delete dedy;
    }
}

981
/*
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
forward process (with tensor connections) (this is implemented by gather function)
>> ngrams - the loaded ngrams
>> batch - the tensor encoding a batch of words
>> output - output probability
>> model - the fnn model
*/
void ForwardAutoDiff(NGram * ngrams, int batch, XTensor &output, FNNModel &model)
{
    int n = model.n;
    int depth = model.hDepth;

    XTensor words;
    XTensor embeddingBig;
    XTensor hidden;
    XTensor b;

    int size = batch * (n-1);
    int * index = new int[size];

    for(int i = 0; i < batch; i++){
        for (int j = 0; j < n-1; j++){
            int a = i * (n - 1) + j;
            index[a] = ngrams[i].words[j];
        }
    }

1008
    InitTensor1DV2(&words, size, X_INT, model.devID);
xuchen committed
1009 1010 1011
    words.SetData(index, size);

    embeddingBig = Gather(model.embeddingW, words);
1012

1013 1014 1015
    delete[] index;

    int dimSize[2];
xuchen committed
1016 1017
    dimSize[0] = embeddingBig.GetDim(0) / (n - 1);
    dimSize[1] = embeddingBig.GetDim(1) * (n - 1);
1018

xuchen committed
1019
    hidden = Reshape(embeddingBig, embeddingBig.order, dimSize);
1020 1021 1022

    /* hidden layers */
    for(int i = 0; i < depth; i++)
xuchen committed
1023
        hidden = HardTanH(MMul(hidden, model.hiddenW[i]) + model.hiddenB[i]);
1024 1025

    /* output layer */
1026 1027
    //output = LogSoftmax(MMul(hidden, model.outputW) + model.outputB, 1);
    output = Softmax(MMul(hidden, model.outputW) + model.outputB, 1);
1028 1029 1030 1031
}

/*
forward process (with tensor connections) (this is implemented by multiply function)
1032 1033 1034 1035
>> inputs - input word representations
>> output - output probability
>> model - the fnn model
*/
1036
void ForwardAutoDiff(XTensor inputs[], XTensor &output, FNNModel &model)
1037 1038 1039 1040 1041 1042 1043 1044 1045
{
    int n = model.n;
    int depth = model.hDepth;

    XTensor words;
    XTensor embeddingBig;
    XTensor hidden;
    XTensor b;

1046
    TensorList inputList(n - 1);
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    for(int i = 0; i < n - 1; i++)
        inputList.Add(inputs + i);

    /* represent n - 1 words in one tensor */
    words = Merge(inputList, 0);

    /* word embedding */
    embeddingBig = MMul(words, model.embeddingW);

    /* input of the first hidden layer */
    hidden = Split(embeddingBig, 0, n - 1);
1058
    hidden = Merge(hidden, 2, 0);
1059 1060

    /* hidden layers */
xiaotong committed
1061 1062
    for(int i = 0; i < depth; i++)
        hidden = MMul(hidden, model.hiddenW[i]) + model.hiddenB[i];
1063 1064

    /* output layer */
xiaotong committed
1065
    output = LogSoftmax(MMul(hidden, model.outputW) + model.outputB, 1);
1066

1067 1068
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/* 
dump the model to the disk space
>> fn - where to keep the model
>> model - the fnn model
*/
void Dump(const char * fn, FNNModel &model)
{
    FILE * file = fopen(fn, "wb");
    CheckErrors(file, "Cannot open the model file");

    model.embeddingW.Dump(file, "embedding w:");
    for (int i = 0; i < model.hDepth; i++) {
        char name[MAX_NAME_LENGTH];
        sprintf(name, "hidden %d w:", i);
        model.hiddenW[i].Dump(file, name);
        sprintf(name, "hidden %d b:", i);
        model.hiddenB[i].Dump(file, name);
    }

    model.outputW.Dump(file, "output w:");
    model.outputB.Dump(file, "output b:");

    fclose(file);

    XPRINT(0, stderr, "[INFO] model saved\n");
}

/* 
read the model from the disk space
>> fn - where to keep the model
>> model - the fnn model
*/
void Read(const char * fn, FNNModel &model)
{
    FILE * file = fopen(fn, "rb");
    CheckErrors(file, "Cannot open the model file");

    model.embeddingW.Read(file, "embedding w:");
    for (int i = 0; i < model.hDepth; i++) {
        char name[MAX_NAME_LENGTH];
        sprintf(name, "hidden %d w:", i);
        model.hiddenW[i].Read(file, name);
        sprintf(name, "hidden %d b:", i);
        model.hiddenB[i].Read(file, name);
    }

    model.outputW.Read(file, "output w:");
    model.outputB.Read(file, "output b:");

    fclose(file);

    XPRINT(0, stderr, "[INFO] model loaded\n");
}

/* 
test the model
>> test - test data file
>> result - where to keep the result
>> model - the fnn model
*/
void Test(const char * test, const char * result, FNNModel &model)
{
    int wordCount = 0;
    int sentCount = 0;
    float loss = 0;

    NGram * ngrams = new NGram[MAX_LINE_LENGTH_HERE];

    double startT = GetClockSec();

    /* data files */
    FILE * file = fopen(test, "rb");
    CheckErrors(file, "Cannot read the test file");
    FILE * ofile = fopen(result, "wb");
    CheckErrors(ofile, "Cannot open the output file");

    int ngramNum = 1;
    while (ngramNum > 0) {

        /* load a minibatch of ngrams */
        ngramNum = LoadNGrams(file, model.n, ngrams, 1, MAX_INT);

        if (ngramNum <= 0)
            break;

        /* previous n - 1 words */
        XTensor inputs[MAX_N_GRAM];

        /* the predicted word */
        XTensor output;

        /* the gold standard */
        XTensor gold;
xuchen committed
1162 1163 1164 1165 1166 1167 1168
        
        /* make the input tensor for position i */
        for (int i = 0; i < model.n - 1; i++)
            MakeWordBatch(inputs[i], ngrams, ngramNum, i, model.vSize, model.devID, model.mem);

        /* make the gold tensor */
        MakeWordBatch(gold, ngrams, ngramNum, model.n - 1, model.vSize, model.devID, model.mem);
1169

xiaotong committed
1170 1171 1172
        if (!autoDiff) {
            /* prepare an empty network for building the fnn */
            FNNNet net;
1173

xiaotong committed
1174 1175 1176
            /* forward computation */
            Forward(inputs, output, model, net);
        }
1177 1178 1179
        else {			
			/* this is implemented by gather function */
            ForwardAutoDiff(ngrams, ngramNum, output, model);
1180
            output = Log(output);
1181 1182 1183
				
			/* this is implemented by multiply function */
			//ForwardAutoDiff(inputs, output, model);
xiaotong committed
1184
        }
1185 1186 1187

        /* prediction probabilities */
        XTensor probs;
1188
        InitTensor1DV2(&probs, ngramNum);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

        /* get probabilities */
        float prob = GetProb(output, gold, &probs);

        /* dump the test result */
        for (int i = 0; i < model.n - 1; i++)
            fprintf(ofile, "%d ", ngrams[0].words[i]);
        for (int i = 0; i < ngramNum; i++)
            fprintf(ofile, "%d ", ngrams[i].words[model.n - 1]);
        fprintf(ofile, "||| ");
        for (int i = 0; i < model.n - 1; i++)
            fprintf(ofile, "<s> ");
        for (int i = 0; i < ngramNum; i++)
            fprintf(ofile, "%f ", probs.Get1D(i));
        fprintf(ofile, "||| %f\n", prob);

        loss += -prob;
        wordCount += ngramNum;
        sentCount += 1;
    }

    fclose(file);
1211
    fclose(ofile);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

    double elapsed = GetClockSec() - startT;

    XPRINT1(0, stderr, "[INFO] ppl=%.2f\n", exp(loss/wordCount));
    XPRINT3(0, stderr, "[INFO] test finished (took %.1fs, sentence=%d and ngram=%d)\n", 
               elapsed, sentCount, wordCount);

    delete[] ngrams;
}

};