HardTanH.cu 4.38 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25
*/

#include "HardTanH.h"
#include "HardTanH.cuh"
#include "Loss.cuh"
#include "../XDevice.h"

namespace nts{ // namespace nts(NiuTrans.Tensor)

#ifdef USE_CUDA

/* 
hard tanh forward computation (Cuda kernel) 
y =  1    if x > 1
     x    if -1 <= x <= 1
    -1    if x < -1
>> x - input data array
>> y - output data array
>> size - size of input/output
*/
__global__ 
void KernelHardtanhCompute(DTYPE * x, DTYPE * y, int size)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size){
        DTYPE p = x[i];
        if(p > (DTYPE)1.0)
            p = (DTYPE)1.0;
        else if(p < (DTYPE)-1.0)
            p = (DTYPE)-1.0;
        y[i] = p;
    }
}

/*
hard tanh forward computation (Cuda version) 
y =  1    if x > 1
     x    if -1 <= x <= 1
    -1    if x < -1
>> x - input tensor
>> y - output tensor
*/
63
void _CudaHardTanH(const XTensor * x, XTensor * y)
xiaotong committed
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
{
    if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){

        CheckNTErrors(!x->isSparse && !y->isSparse, "The hard tanh activation function does not support sparse tensors.");
        CheckNTErrors(x->unitNum && y->unitNum, "The x vectors must be of the same length.");

        int gridSize[3], blockSize[3];

        GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize);

        int devIDBackup;
        ProtectCudaDev(x->devID, devIDBackup);

        KernelHardtanhCompute<<<dim3(gridSize[0]), dim3(blockSize[0])>>>((DTYPE*)x->data, (DTYPE*)y->data, x->unitNum);

        BacktoCudaDev(x->devID, devIDBackup);
    }
    else{
        ShowNTErrors("TODO!");
    }
}

/* 
hard tanh backward computation of dE/dx (Cuda kernel)

dy/dx = 1     if -1 <= x <= 1
        0     otherwise

>> dedy - dE/dy
>> dedx - dE/dx
>> gold - gold standard
>> y - y of the function
>> x - x of the function
>> size - size of y/x
*/
__global__ 
void KernelHardtanhBackward(DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE * x, int size)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size){
        DTYPE s = x[i];
        if(s > (DTYPE)1.0 || s < (DTYPE)-1.0)
            dedx[i] = 0;
        else
            dedx[i] = dedy[i];
    }
}

/*
backward computation (Cuda version)

dE/dx = dE/dy * dy/dx

hard tanh: y =  1    if x > 1
                x    if -1 <= x <= 1
               -1    if x< -1

   and dy/dx =  1    if -1 <= x <= 1
                0    otherwise

>> gold - gold standard to measure error (or loss)
>> y - output of the function
>> x - input of the function
>> dedy - dE/dy
>> dedx - dE/dx
>> lossName - type of loss function, e.g., cross entropy
*/
xiaotong committed
132 133 134
void _CudaHardTanHBackward(XTensor * gold, XTensor * y, XTensor * x, 
                           XTensor * dedy, XTensor * dedx,
                           LOSS_FUNCTION_NAME lossName)
xiaotong committed
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
{
    if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){

        /* calculate dE/dy */
        if(lossName != NOLOSS)
            LossBackward(dedy, gold, y, lossName);

        int gridSize[3], blockSize[3];

        GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize);

        int devIDBackup;
        ProtectCudaDev(x->devID, devIDBackup);

        /* dE/dx = dE/dy * dy/dx */
        KernelHardtanhBackward<<<dim3(gridSize[0]),dim3(blockSize[0])>>>
                               ((DTYPE*)dedy->data, 
                                (DTYPE*)dedx->data,
                                 gold == NULL ? NULL : (DTYPE*)gold->data, 
                                (DTYPE*)y->data, (DTYPE*)x->data, 
                                 x->unitNum);

        BacktoCudaDev(x->devID, devIDBackup);
    }
    else
        ShowNTErrors("TODO!");
}

#endif

} // namespace nts(NiuTrans.Tensor)