Unsqueeze.cu 12.9 KB
Newer Older
xiaotong committed
1
/* NiuTrans.Tensor - an open-source tensor library
2
* Copyright (C) 2017, Natural Language Processing Lab, Northeastern University.
xiaotong committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*
* $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24
*/

22 23
#include "../../XDevice.h"
#include "../../XTensor.h"
xiaotong committed
24 25 26 27 28 29 30 31 32 33 34
#include "Unsqueeze.h"
#include "Unsqueeze.cuh"

namespace nts { // namespace nts(NiuTrans.Tensor)

#ifdef  USE_CUDA

/*
insert a dimension by copying the blocks for n times (where n is the size of the inerted dimension)
>> s - pointer to the source data array
>> blockSize - size of a block
xiaotong committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

>> totalSize - total size of the blocks (i.e., blockSIze * n)
>> t - pointer to the target data array
>> n - number of blocks to copy data
*/
template<class T>
__global__
void KernelUnsqueezeFlat(void * s, int blockSize, int totalSize, void * t, int n)
{
    /* index of data items */
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i >= blockSize)
        return;

    T value = ((T*)s)[i];
    T * tData = (T*)t;

    __syncthreads();

    for (int k = i; k < totalSize; k += blockSize)
        tData[k] = value;
}

/*
insert a dimension by copying the blocks for n times (where n is the size of the inerted dimension)
>> s - pointer to the source data array
>> blockSize - size of a block

>> totalSize - total size of the blocks (i.e., blockSIze * n)
>> t - pointer to the target data array
>> n - number of blocks to copy data
*/
template<class T>
__global__
void KernelUnsqueezeFlatBigram(void * s, int blockSize, int totalSize, void * t, int n)
{
    /* index of data items */
    int i = (blockDim.x * blockIdx.x + threadIdx.x) * 2;

    if (i >= blockSize)
        return;

    T value = ((T*)s)[i];
    T value2 = ((T*)s)[i + 1];
    T * tData = (T*)t;

    __syncthreads();

    for (int k = i; k < totalSize; k += blockSize){
        tData[k] = value;
        tData[k + 1] = value2;
    }
}

/*
insert a dimension by copying the blocks for n times (where n is the size of the inerted dimension)
>> s - pointer to the source data array
>> blockSize - size of a block

>> totalSize - total size of the blocks (i.e., blockSIze * n)
>> t - pointer to the target data array
>> n - number of blocks to copy data
*/
template<class T>
__global__
void KernelUnsqueezeFlat2D(void * s, int blockSize, int totalSize, void * t, int n)
{
    __shared__ T data[MAX_CUDA_THREAD_NUM_PER_BLOCK];
    __shared__ int offsets[MAX_CUDA_THREAD_NUM_PER_BLOCK];

    /* index of data items */
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    /* index of data items */
    int j = blockDim.y * blockIdx.y + threadIdx.y;

    if (i >= blockSize || j >= n)
        return;

    if(threadIdx.y == 0)
        data[threadIdx.x] = ((T*)s)[i];
    if(threadIdx.x == 0)
        offsets[threadIdx.y] = blockSize * j;

    __syncthreads();

    ((T*)t)[offsets[threadIdx.y] + i] = data[threadIdx.x];
}

/*
insert a dimension by copying the blocks for n times (where n is the size of the inerted dimension)
>> s - pointer to the source data array
>> blockSize - size of a block
xiaotong committed
129
>> blockNum - number of the blocks
130
>> totalSize - total size of the blocks (i.e., blockSize * n)
xiaotong committed
131
>> t - pointer to the target data array
xiaotong committed
132
>> n - number of blocks to copy data
xiaotong committed
133 134 135
*/
template<class T>
__global__
xiaotong committed
136
void KernelUnsqueeze(void * s, int blockSize, int blockNum, int totalSize, void * t, int n)
xiaotong committed
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
{
    /* index of data items */
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    /* block index */
    int j = blockDim.y * blockIdx.y + threadIdx.y;

    if (i >= blockSize || j >= blockNum)
        return;

    MTYPE offset = blockSize * j;
    T value = ((T*)s)[offset + i];
    T * tData = (T*)t + offset * n;

    __syncthreads();

xiaotong committed
153
    for (int k = i; k < totalSize; k += blockSize)
xiaotong committed
154 155 156 157
        tData[k] = value;
}

/*
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
insert a dimension by copying the blocks for n times (where n is the size of the inerted dimension)
This is special case where we actually copy a v-dimentional column vector by n times to form a v * n matrix
>> s - pointer to the source data array
>> rowNum - number of rows (i.e., dimension size of s)
>> colNum - number of columns (i.e., number of copies)
>> t - pointer to the target data array
*/
template<class T>
__global__
void KernelUnsqueezeByCol(void * s, int rowNum, int colNum, void * t)
{
    __shared__ T values[MAX_CUDA_THREAD_NUM_PER_BLOCK];
    __shared__ T * ts[MAX_CUDA_THREAD_NUM_PER_BLOCK];

    /* column index */
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    /* row index */
    int j = blockDim.y * blockIdx.y + threadIdx.y;

    if (i >= colNum || j >= rowNum)
        return;

    if(threadIdx.x == 0){
        values[threadIdx.y] = ((T*)s)[j];
        ts[threadIdx.y] = (T*)t + colNum * j;
    }

    __syncthreads();

    ts[threadIdx.y][i] = values[threadIdx.y];
}

/*
insert a dimension by copying the blocks for n times (where n is the size of the inerted dimension)
This is special case where we actually copy a v-dimentional column vector by n times to form a v * n matrix
And a row is very big so that it occupies the cuda threads in a block
>> s - pointer to the source data array
>> rowNum - number of rows (i.e., dimension size of s)
>> colNum - number of columns (i.e., number of copies)
>> t - pointer to the target data array
*/
template<class T>
__global__
void KernelUnsqueezeByColBigRow(void * s, int rowNum, int colNum, void * t)
{
    __shared__ T value;
    __shared__ T * tData;

    /* column index */
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    /* row index */
    int j = blockDim.y * blockIdx.y + threadIdx.y;

    if (i >= colNum || j >= rowNum)
        return;

    if (threadIdx.x == 0) {
        value = ((T*)s)[j];
        tData = (T*)t + colNum * j;
    }

    __syncthreads();

    tData[i] = value;
}

/*
xiaotong committed
227 228 229 230 231 232
insert a dimension by copying the blocks for x times (where x is the size of the inerted dimension)
>> a - input tensor
>> b - output tensor
>> dim - where to insert the dimension
>> dSize - size of the newly-inserted dimension
*/
233
void _CudaUnsqueeze(const XTensor * a, XTensor * b, int dim, int dSize)
xiaotong committed
234 235 236 237
{
    int blockSize = 1;
    int blockNumA = 1;
    int blockNumB = 1;
238 239
    for (int i = dim; i < a->order; i++)
        blockSize *= a->dimSize[i];
xiaotong committed
240 241 242 243 244 245 246 247 248 249 250 251

    blockNumA = a->unitNum / blockSize;
    blockNumB = b->unitNum / blockSize;

    CheckNTErrors((blockNumA * dSize == blockNumB), "Unmatched tensors!");;

    int cudaGrids[3];
    int cudaBlocks[3];

    int devIDBackup = 0;
    ProtectCudaDev(a->devID, devIDBackup);

252
    if (dim == b->order - 1) {
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        GDevs.GetCudaThread2D(a->devID, dSize, blockNumA, MAX_INT, cudaGrids, cudaBlocks);

        if (a->dataType == X_FLOAT && b->dataType == X_FLOAT) {
            if (cudaBlocks[1] == 1)
                KernelUnsqueezeByColBigRow<float> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                                     (a->data, blockNumA, dSize, b->data);
            else
                KernelUnsqueezeByCol<float> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                               (a->data, blockNumA, dSize, b->data);
        }
        else if (a->dataType == X_INT && b->dataType == X_INT) {
            if (cudaBlocks[1] == 1)
                KernelUnsqueezeByColBigRow<int> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                                   (a->data, blockNumA, dSize, b->data);
            else
                KernelUnsqueezeByCol<int> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                             (a->data, blockNumA, dSize, b->data);
        }
271 272 273 274 275 276 277 278
        else if (a->dataType == X_FLOAT16 && b->dataType == X_FLOAT16) {
            if (cudaBlocks[1] == 1)
                KernelUnsqueezeByColBigRow<__half> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                                   (a->data, blockNumA, dSize, b->data);
            else
                KernelUnsqueezeByCol<__half> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                             (a->data, blockNumA, dSize, b->data);
        }
279 280 281 282 283 284 285
        else {
            ShowNTErrors("TODO!");
        }

        
    }
    else if(blockNumA > 1){
xiaotong committed
286 287
        GDevs.GetCudaThread2D(a->devID, blockSize, blockNumA, MAX_INT, cudaGrids, cudaBlocks);

288
        if (a->dataType == X_FLOAT && b->dataType == X_FLOAT) {
xiaotong committed
289 290 291
            KernelUnsqueeze<float> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                      (a->data, blockSize, blockNumA, blockSize * dSize, b->data, dSize);
        }
292
        else if (a->dataType == X_INT && b->dataType == X_INT) {
xiaotong committed
293 294 295
            KernelUnsqueeze<int> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                    (a->data, blockSize, blockNumA, blockSize * dSize, b->data, dSize);
        }
296 297 298 299
        else if (a->dataType == X_FLOAT16 && b->dataType == X_FLOAT16) {
            KernelUnsqueeze<half> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                    (a->data, blockSize, blockNumA, blockSize * dSize, b->data, dSize);
        }
xiaotong committed
300 301 302 303 304 305 306
        else {
            ShowNTErrors("TODO!");
        }
    }
    else if(blockNumA == 1 && blockSize < MAX_CUDA_THREAD_NUM_PER_BLOCK){
        GDevs.GetCudaThread2D(a->devID, blockSize, dSize, MAX_CUDA_THREAD_NUM_PER_BLOCK/4, cudaGrids, cudaBlocks);

307
        if (a->dataType == X_FLOAT && b->dataType == X_FLOAT) {
xiaotong committed
308 309 310
            KernelUnsqueezeFlat2D<float> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                          (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
311
        else if (a->dataType == X_INT && b->dataType == X_INT) {
xiaotong committed
312 313 314
            KernelUnsqueezeFlat2D<int> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                        (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
315 316 317 318
        else if (a->dataType == X_FLOAT16 && b->dataType == X_FLOAT16) {
            KernelUnsqueezeFlat2D<half> << <dim3(cudaGrids[0], cudaGrids[1]), dim3(cudaBlocks[0], cudaBlocks[1]) >> >
                                           (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
xiaotong committed
319 320 321 322 323 324 325
        else {
            ShowNTErrors("TODO!");
        }
    }
    else if(blockNumA == 1 && blockSize % 2 == 0){
        GDevs.GetCudaThread(a->devID, blockSize/2, cudaGrids, cudaBlocks);

326
        if (a->dataType == X_FLOAT && b->dataType == X_FLOAT) {
xiaotong committed
327 328 329
            KernelUnsqueezeFlatBigram<float> << <dim3(cudaGrids[0]), dim3(cudaBlocks[0]) >> >
                                                (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
330
        else if (a->dataType == X_INT && b->dataType == X_INT) {
xiaotong committed
331 332 333
            KernelUnsqueezeFlatBigram<int> << <dim3(cudaGrids[0]), dim3(cudaBlocks[0]) >> >
                                              (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
334 335 336 337
        else if (a->dataType == X_FLOAT16 && b->dataType == X_FLOAT16) {
            KernelUnsqueezeFlatBigram<half> << <dim3(cudaGrids[0]), dim3(cudaBlocks[0]) >> >
                                               (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
xiaotong committed
338 339 340
        else {
            ShowNTErrors("TODO!");
        }
xiaotong committed
341
    }
xiaotong committed
342 343 344
    else if(blockNumA == 1){
        GDevs.GetCudaThread(a->devID, blockSize, cudaGrids, cudaBlocks);

345
        if (a->dataType == X_FLOAT && b->dataType == X_FLOAT) {
xiaotong committed
346 347 348
            KernelUnsqueezeFlat<float> << <dim3(cudaGrids[0]), dim3(cudaBlocks[0]) >> >
                                          (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
349
        else if (a->dataType == X_INT && b->dataType == X_INT) {
xiaotong committed
350 351 352
            KernelUnsqueezeFlat<int> << <dim3(cudaGrids[0]), dim3(cudaBlocks[0]) >> >
                                        (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
353 354 355 356
        else if (a->dataType == X_FLOAT16 && b->dataType == X_FLOAT16) {
            KernelUnsqueezeFlat<half> << <dim3(cudaGrids[0]), dim3(cudaBlocks[0]) >> >
                                         (a->data, blockSize, blockSize * dSize, b->data, dSize);
        }
xiaotong committed
357 358 359
        else {
            ShowNTErrors("TODO!");
        }
xiaotong committed
360
    }
xiaotong committed
361 362
    else{
        ShowNTErrors("Something is wrong!");
xiaotong committed
363 364 365 366 367 368 369
    }

    BacktoCudaDev(a->devID, devIDBackup);
}

#endif // USE_CUDA
} // namespace nts(NiuTrans.Tensor)