TReduceSum.cpp 18.6 KB
Newer Older
xiaotong committed
1
/* NiuTrans.Tensor - an open-source tensor library
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
xiaotong committed
17 18

/*
19 20
 * $Created by: LI Yinqiao (email: li.yin.qiao.2012@hotmail.com) 2018-04-30
 */
xiaotong committed
21

22
#include "../core/getandset/SetData.h"
23 24
#include "../core/utilities/CheckData.h"
#include "TReduceSum.h"
liyinqiao committed
25 26

namespace nts { // namespace nts(NiuTrans.Tensor)
liyinqiao committed
27 28

/* 
29 30
case 1: test ReduceSum function.
Sum the items along a dimension of the tensor.
liyinqiao committed
31
In this case, 
liyinqiao committed
32 33 34
(2, 4) -> (4), dim = 0
(2, 4) -> (2), dim = 1
*/
35 36
bool TestReduceSum1()
{
liyinqiao committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    /* a tensor of size (2, 4) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 2;
    sDimSize[1] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (4) */
    int tOrder1 = 1;
    int * tDimSize1 = new int[tOrder1];
    tDimSize1[0] = 4;

    int tUnitNum1 = 1;
    for (int i = 0; i < tOrder1; i++)
        tUnitNum1 *= tDimSize1[i];

    /* a tensor of size (2) */
    int tOrder2 = 1;
    int * tDimSize2 = new int[tOrder2];
    tDimSize2[0] = 2;

    int tUnitNum2 = 1;
    for (int i = 0; i < tOrder2; i++)
        tUnitNum2 *= tDimSize2[i];

liyinqiao committed
65 66 67 68
    DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F},
                           {4.0F, 5.0F, 6.0F, 7.0F} };
    DTYPE answer1[4] = {4.0F, 6.0F, 8.0F, 10.0F};
    DTYPE answer2[2] = {6.0F, 22.0F};
69 70 71 72 73

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
74 75 76 77 78
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * shift1 = NewTensorV2(tOrder1, tDimSize1);
    XTensor * shift2 = NewTensorV2(tOrder2, tDimSize2);
    XTensor * t1 = NewTensorV2(tOrder1, tDimSize1);
    XTensor * t2 = NewTensorV2(tOrder2, tDimSize2);
79 80
    XTensor tUser1;
    XTensor tUser2;
81 82

    /* initialize variables */
liyinqiao committed
83
    s->SetData(sData, sUnitNum);
84 85
    shift1->SetZeroAll();
    shift2->SetZeroAll();
liyinqiao committed
86 87
    t1->SetZeroAll();
    t2->SetZeroAll();
88

liyinqiao committed
89
    /* call ReduceSum function */
90 91
    _ReduceSum(s, t1, 0);
    _ReduceSum(s, t2, 1);
92 93
    tUser1 = ReduceSum(*s, 0, *shift1);
    tUser2 = ReduceSum(*s, 1, *shift2);
94 95

    /* check results */
96 97
    cpuTest = _CheckData(t1, answer1, tUnitNum1) && _CheckData(&tUser1, answer1, tUnitNum1) &&
              _CheckData(t2, answer2, tUnitNum2) && _CheckData(&tUser2, answer2, tUnitNum2);
xiaotong committed
98 99

#ifdef USE_CUDA
100 101 102
    /* GPU test */
    bool gpuTest = true;

liyinqiao committed
103
    /* create tensors */
104 105 106 107 108
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * shiftGPU1 = NewTensorV2(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * shiftGPU2 = NewTensorV2(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
    XTensor * tGPU1 = NewTensorV2(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0);
    XTensor * tGPU2 = NewTensorV2(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0);
109 110
    XTensor tUserGPU1;
    XTensor tUserGPU2;
111

liyinqiao committed
112 113
    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
114 115
    shiftGPU1->SetZeroAll();
    shiftGPU2->SetZeroAll();
liyinqiao committed
116 117
    tGPU1->SetZeroAll();
    tGPU2->SetZeroAll();
118

liyinqiao committed
119
    /* call ReduceSum function */
120 121
    _ReduceSum(sGPU, tGPU1, 0);
    _ReduceSum(sGPU, tGPU2, 1);
122 123
    tUserGPU1 = ReduceSum(*sGPU, 0, *shiftGPU1);
    tUserGPU2 = ReduceSum(*sGPU, 1, *shiftGPU2);
124 125

    /* check results */
126 127
    gpuTest = _CheckData(tGPU1, answer1, tUnitNum1) && _CheckData(&tUserGPU1, answer1, tUnitNum1) &&
              _CheckData(tGPU2, answer2, tUnitNum2) && _CheckData(&tUserGPU2, answer2, tUnitNum2);
128 129

    /* destroy variables */
liyinqiao committed
130
    delete s;
131 132
    delete shift1;
    delete shift2;
liyinqiao committed
133 134 135
    delete t1;
    delete t2;
    delete sGPU;
136 137
    delete shiftGPU1;
    delete shiftGPU2;
liyinqiao committed
138 139 140 141 142 143
    delete tGPU1;
    delete tGPU2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;
    
144
    return cpuTest && gpuTest;
xiaotong committed
145
#else
146
    /* destroy variables */
liyinqiao committed
147
    delete s;
148 149
    delete shift1;
    delete shift2;
liyinqiao committed
150 151 152 153 154 155
    delete t1;
    delete t2;
    delete[] sDimSize;
    delete[] tDimSize1;
    delete[] tDimSize2;

156
    return cpuTest;
xiaotong committed
157
#endif // USE_CUDA
158 159
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* 
case 2: test ReduceSum function.
Sum the items along a dimension of the tensor.
In this case, 
C = 1, A >= 10, B >= 128
(50, 1000000) -> (50), dim = 1
*/
bool TestReduceSum2()
{
    /* a tensor of size (50, 1000000) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 50;
    sDimSize[1] = 1000000;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (50) */
    int tOrder = 1;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 50;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
192 193 194
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * answer = NewTensorV2(tOrder, tDimSize);
195 196 197
    XTensor tUser;

    /* initialize variables */
198 199
    s->SetDataFixed(1);
    answer->SetDataFixed(s->GetDim(1));
200 201 202 203 204 205

    /* call ReduceSum function */
    _ReduceSum(s, t, 1);
    tUser = ReduceSum(*s, 1);

    /* check results */
206
    cpuTest = _CheckData(t, answer->data, tUnitNum) && _CheckData(&tUser, answer->data, tUnitNum);
207 208 209 210 211 212

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
213 214
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
215 216 217
    XTensor tUserGPU;

    /* initialize variables */
218
    sGPU->SetDataFixed(1);
219 220 221 222 223 224

    /* call ReduceSum function */
    _ReduceSum(sGPU, tGPU, 1);
    tUserGPU = ReduceSum(*sGPU, 1);

    /* check results */
225
    gpuTest = _CheckData(tGPU, answer->data, tUnitNum) && _CheckData(&tUserGPU, answer->data, tUnitNum);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    
    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 3: test ReduceSum function.
Sum the items along a dimension of the tensor.
In this case, 
C = 1, A >= 10, B < 128
(1000000, 50) -> (1000000), dim = 1
*/
bool TestReduceSum3()
{
    /* a tensor of size (1000000, 50) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 1000000;
    sDimSize[1] = 50;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (1000000) */
    int tOrder = 1;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 1000000;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
281 282 283
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * answer = NewTensorV2(tOrder, tDimSize);
284 285 286
    XTensor tUser;

    /* initialize variables */
287 288
    s->SetDataFixed(1);
    answer->SetDataFixed(s->GetDim(1));
289 290 291 292 293 294

    /* call ReduceSum function */
    _ReduceSum(s, t, 1);
    tUser = ReduceSum(*s, 1);

    /* check results */
295
    cpuTest = _CheckData(t, answer->data, tUnitNum) && _CheckData(&tUser, answer->data, tUnitNum);
296 297 298 299 300 301

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
302 303
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
304 305 306
    XTensor tUserGPU;

    /* initialize variables */
307
    sGPU->SetDataFixed(1);
308 309 310 311 312 313

    /* call ReduceSum function */
    _ReduceSum(sGPU, tGPU, 1);
    tUserGPU = ReduceSum(*sGPU, 1);

    /* check results */
314
    gpuTest = _CheckData(tGPU, answer->data, tUnitNum) && _CheckData(&tUserGPU, answer->data, tUnitNum);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    
    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 4: test ReduceSum function.
Sum the items along a dimension of the tensor.
In this case, 
C = 1, A < 10, B is free
(5, 1000000) -> (5), dim = 1
*/
bool TestReduceSum4()
{
    /* a tensor of size (5, 1000000) */
    int sOrder = 2;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 5;
    sDimSize[1] = 1000000;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (5) */
    int tOrder = 1;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 5;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
370 371 372
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * answer = NewTensorV2(tOrder, tDimSize);
373 374 375
    XTensor tUser;

    /* initialize variables */
376 377
    s->SetDataFixed(1);
    answer->SetDataFixed(s->GetDim(1));
378 379 380 381 382 383

    /* call ReduceSum function */
    _ReduceSum(s, t, 1);
    tUser = ReduceSum(*s, 1);

    /* check results */
384
    cpuTest = _CheckData(t, answer->data, tUnitNum) && _CheckData(&tUser, answer->data, tUnitNum);
385 386 387 388 389 390

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
391 392
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
393 394 395
    XTensor tUserGPU;

    /* initialize variables */
396
    sGPU->SetDataFixed(1);
397 398 399 400 401 402

    /* call ReduceSum function */
    _ReduceSum(sGPU, tGPU, 1);
    tUserGPU = ReduceSum(*sGPU, 1);

    /* check results */
403
    gpuTest = _CheckData(tGPU, answer->data, tUnitNum) && _CheckData(&tUserGPU, answer->data, tUnitNum);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    
    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

/* 
case 5: test ReduceSum function.
Sum the items along a dimension of the tensor.
In this case, 
C != 1, A*C > 4096
(500, 1000, 500) -> (500, 500), dim = 1
*/
bool TestReduceSum5()
{
    /* a tensor of size (500, 1000, 500) */
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 500;
    sDimSize[1] = 1000;
    sDimSize[2] = 500;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (500, 500) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 50;
    tDimSize[1] = 50;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
461 462 463
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * answer = NewTensorV2(tOrder, tDimSize);
464 465 466
    XTensor tUser;

    /* initialize variables */
467 468
    s->SetDataFixed(1);
    answer->SetDataFixed(s->GetDim(1));
469 470 471 472 473 474

    /* call ReduceSum function */
    _ReduceSum(s, t, 1);
    tUser = ReduceSum(*s, 1);

    /* check results */
475
    cpuTest = _CheckData(t, answer->data, tUnitNum) && _CheckData(&tUser, answer->data, tUnitNum);
476 477 478 479 480 481

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
482 483
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
484 485 486
    XTensor tUserGPU;

    /* initialize variables */
487
    sGPU->SetDataFixed(1);
488 489 490 491 492 493

    /* call ReduceSum function */
    _ReduceSum(sGPU, tGPU, 1);
    tUserGPU = ReduceSum(*sGPU, 1);

    /* check results */
494
    gpuTest = _CheckData(tGPU, answer->data, tUnitNum) && _CheckData(&tUserGPU, answer->data, tUnitNum);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    
    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}


/* 
case 6: test ReduceSum function.
Sum the items along a dimension of the tensor.
In this case, 
C != 1, A*C <= 4096
(50, 10000, 50) -> (50, 50), dim = 1
*/
bool TestReduceSum6()
{
    /* a tensor of size (50, 10000, 50) */
    int sOrder = 3;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 50;
    sDimSize[1] = 10000;
    sDimSize[2] = 50;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a tensor of size (50, 50) */
    int tOrder = 2;
    int * tDimSize = new int[tOrder];
    tDimSize[0] = 50;
    tDimSize[1] = 50;

    int tUnitNum = 1;
    for (int i = 0; i < tOrder; i++)
        tUnitNum *= tDimSize[i];

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
553 554 555
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor * answer = NewTensorV2(tOrder, tDimSize);
556 557 558
    XTensor tUser;

    /* initialize variables */
559 560
    s->SetDataFixed(1);
    answer->SetDataFixed(s->GetDim(1));
561 562 563 564 565 566

    /* call ReduceSum function */
    _ReduceSum(s, t, 1);
    tUser = ReduceSum(*s, 1);

    /* check results */
567
    cpuTest = _CheckData(t, answer->data, tUnitNum) && _CheckData(&tUser, answer->data, tUnitNum);
568 569 570 571 572 573

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
574 575
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
576 577 578
    XTensor tUserGPU;

    /* initialize variables */
579
    sGPU->SetDataFixed(1);
580 581 582 583 584 585

    /* call ReduceSum function */
    _ReduceSum(sGPU, tGPU, 1);
    tUserGPU = ReduceSum(*sGPU, 1);

    /* check results */
586
    gpuTest = _CheckData(tGPU, answer->data, tUnitNum) && _CheckData(&tUserGPU, answer->data, tUnitNum);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;
    
    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete answer;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}

xuchen committed
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
/*
case 7: test ReduceSum function.
Sum the items along a dimension of the tensor.
In this case,
(4) -> scalar, dim = 0
*/
bool TestReduceSum7()
{
    /* a tensor of size (2, 4) */
    int sOrder = 1;
    int * sDimSize = new int[sOrder];
    sDimSize[0] = 4;

    int sUnitNum = 1;
    for (int i = 0; i < sOrder; i++)
        sUnitNum *= sDimSize[i];

    /* a scalar */
    int tOrder = 0;
    int * tDimSize = new int[MAX_TENSOR_DIM_NUM];
    int tUnitNum = 1;

    DTYPE sData[4] = {0.0F, 1.0F, 2.0F, 3.0F};
    DTYPE answer[1] = {6.0F};

    /* CPU test */
    bool cpuTest = true;

    /* create tensors */
    XTensor * s = NewTensorV2(sOrder, sDimSize);
    XTensor * t = NewTensorV2(tOrder, tDimSize);
    XTensor tUser;

    /* initialize variables */
    s->SetData(sData, sUnitNum);
    t->SetZeroAll();

    /* call ReduceSum function */
    _ReduceSum(s, t, 0);
    tUser = ReduceSum(*s, 0);
    
    /* check results */
    cpuTest = _CheckData(t, answer, tUnitNum) && _CheckData(&tUser, answer, tUnitNum);

#ifdef USE_CUDA
    /* GPU test */
    bool gpuTest = true;

    /* create tensors */
    XTensor * sGPU = NewTensorV2(sOrder, sDimSize, X_FLOAT, 1.0F, 0);
    XTensor * tGPU = NewTensorV2(tOrder, tDimSize, X_FLOAT, 1.0F, 0);
    XTensor tUserGPU;

    /* initialize variables */
    sGPU->SetData(sData, sUnitNum);
    tGPU->SetZeroAll();

    /* call ReduceSum function */
    _ReduceSum(sGPU, tGPU, 0);
    tUserGPU = ReduceSum(*sGPU, 0);

    /* check results */
    gpuTest = _CheckData(tGPU, answer, tUnitNum) && _CheckData(&tUserGPU, answer, tUnitNum);

    /* destroy variables */
    delete s;
    delete t;
    delete sGPU;
    delete tGPU;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest && gpuTest;
#else
    /* destroy variables */
    delete s;
    delete t;
    delete[] sDimSize;
    delete[] tDimSize;

    return cpuTest;
#endif // USE_CUDA
}
693

694 695 696 697 698 699 700 701
/* other cases */
/*
TODO!!
*/

/* test for ReduceSum Function */
bool TestReduceSum()
{
liyinqiao committed
702
    XPRINT(0, stdout, "[TEST ReduceSum] sum the items along a dimension of the tensor.\n");
703 704 705 706 707 708 709 710 711 712 713
    bool returnFlag = true, caseFlag = true;

    /* case 1 test */
    caseFlag = TestReduceSum1();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 1 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 1 passed!\n");

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    /* case 2 test */
    caseFlag = TestReduceSum2();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 2 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 2 passed!\n");

    ///* case 3 test */
    //caseFlag = TestReduceSum3();
    //if (!caseFlag) {
    //    returnFlag = false;
    //    XPRINT(0, stdout, ">> case 3 failed!\n");
    //}
    //else
    //    XPRINT(0, stdout, ">> case 3 passed!\n");

    /* case 4 test */
    caseFlag = TestReduceSum4();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 4 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 4 passed!\n");

    ///* case 5 test */
    //caseFlag = TestReduceSum5();
    //if (!caseFlag) {
    //    returnFlag = false;
    //    XPRINT(0, stdout, ">> case 5 failed!\n");
    //}
    //else
    //    XPRINT(0, stdout, ">> case 5 passed!\n");
    
    /* case 6 test */
    caseFlag = TestReduceSum6();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 6 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 6 passed!\n");

xuchen committed
759 760 761 762 763 764 765 766 767
    /* case 7 test */
    caseFlag = TestReduceSum7();
    if (!caseFlag) {
        returnFlag = false;
        XPRINT(0, stdout, ">> case 7 failed!\n");
    }
    else
        XPRINT(0, stdout, ">> case 7 passed!\n");

768
    /* other cases test */
xiaotong committed
769 770 771 772
    /*
    TODO!!
    */

773 774 775 776 777 778 779 780 781
    if (returnFlag) {
        XPRINT(0, stdout, ">> All Passed!\n");
    }
    else
        XPRINT(0, stdout, ">> Failed!\n");

    XPRINT(0, stdout, "\n");

    return returnFlag;
xiaotong committed
782 783
    }

liyinqiao committed
784
} // namespace nts(NiuTrans.Tensor)