Sigmoid.cu 3.4 KB
Newer Older
xiaotong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* NiuTrans.Tensor - an open-source tensor library
 * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. 
 * All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
19 20
 * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25
 */
xiaotong committed
21 22 23 24

#include "Sigmoid.h"
#include "Sigmoid.cuh"
#include "Loss.cuh"
25
#include "../loss/CrossEntropy.cuh"
xiaotong committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "../XDevice.h"

#ifdef USE_CUDA

// the CUDA stuff
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda.h>

#endif

namespace nts{ // namespace nts(NiuTrans.Tensor)

#ifdef USE_CUDA

/* 
sigmoid function y = 1/(1+exp(-x))  (Cuda kernel) 
>> x - input data pointer
>> y - output data pointer
>> size - size of input/output
*/
__global__ 
void KernelSigmoidCompute(DTYPE * x, DTYPE * y, int size)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size){
        y[i] = 1/(1+exp(-x[i]));
    }
}

/*
sigmoid function y = 1/(1+exp(-x)) (Cuda version)
>> x - input vector
>> y - result
*/
62
void _CudaSigmoid(const XTensor * x, XTensor * y)
xiaotong committed
63
{
64 65
    CheckNTErrors(!x->isSparse && !y->isSparse, "the activation function (rectify) does not support sparse matrices.");
    CheckNTErrors(x->unitNum && y->unitNum, "we require two vectors with the same length.");
xiaotong committed
66

67
    int gridSize[3], blockSize[3];
xiaotong committed
68

69
    GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize);
xiaotong committed
70

71 72
    int devIDBackup;
    ProtectCudaDev(x->devID, devIDBackup);
xiaotong committed
73

74
    KernelSigmoidCompute<<<dim3(gridSize[0]), dim3(blockSize[0])>>>((DTYPE*)x->data, (DTYPE*)y->data, x->unitNum);
xiaotong committed
75

76
    BacktoCudaDev(x->devID, devIDBackup);
xiaotong committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
}

/* 
sigmoid backward computation of dE/dx (Cuda kernel)

dE/ds = dE/dy * dy/dx

sigmoid: y = 1/(1+exp(-x))

   and dy/ds = y * (1 -y)

>> dedy - dE/dy
>> dedx - dE/ds
>> y - output of the function
>> x - input of the function
>> size - size of output/input
*/
__global__ 
95
void KernelSigmoidBackward(DTYPE * dedy, DTYPE * dedx, DTYPE * y, int size)
xiaotong committed
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < size){
        dedx[i] = dedy[i] * y[i] * ((DTYPE)1.0 - y[i]);
    }
}

/*
backward computation (Cuda version)

dE/ds = dE/dy * dy/dx

sigmoid: y = 1/(1+exp(-x))

   and dy/dx = y * (1 -y)

>> y - output of the function
>> x - input of the function
>> dedy - dE/dy
>> dedx - dE/dx
*/
118 119
void _CudaSigmoidBackward(XTensor * y, XTensor * x, 
                          XTensor * dedy, XTensor * dedx)
xiaotong committed
120
{
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    int gridSize[3], blockSize[3];

    GDevs.GetCudaThread(y->devID, y->unitNum, gridSize, blockSize);

    int devIDBackup;
    ProtectCudaDev(y->devID, devIDBackup);

    /* dE/dx = dE/dy * dy/dx */
    KernelSigmoidBackward<<<dim3(gridSize[0]),dim3(blockSize[0])>>>
                            ((DTYPE*)dedy->data,
                            (DTYPE*)dedx->data,
                            (DTYPE*)y->data,
                            y->unitNum);

    BacktoCudaDev(x->devID, devIDBackup);
xiaotong committed
136 137
}

138
#endif // USE_CUDA
xiaotong committed
139 140

} // namespace nts(NiuTrans.Tensor)