Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
杨迪
NiuTrans.Tensor
Commits
0405663f
Commit
0405663f
authored
Nov 03, 2019
by
liyinqiao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Merge with Xuchen branch.
parent
c22e2e31
隐藏空白字符变更
内嵌
并排
正在显示
11 个修改的文件
包含
423 行增加
和
7 行删除
+423
-7
source/sample/fnnlm/FNNLM.cpp
+1
-1
source/tensor/XName.cpp
+2
-0
source/tensor/XName.h
+5
-2
source/tensor/XTensor.h
+1
-0
source/tensor/core/CHeader.h
+1
-0
source/tensor/core/math/Compare.cpp
+97
-4
source/tensor/core/math/Compare.cu
+47
-0
source/tensor/core/math/Compare.cuh
+6
-0
source/tensor/core/math/Compare.h
+31
-0
source/tensor/core/shape/Stack.cpp
+190
-0
source/tensor/core/shape/Stack.h
+42
-0
没有找到文件。
source/sample/fnnlm/FNNLM.cpp
查看文件 @
0405663f
...
...
@@ -20,7 +20,7 @@
* This is a simple impelementation of the feed-forward network-baesd language
* model (FNNLM). See more details about FNNLM in
* "A Neural Probabilistic Language Model" by Bengio et al.
* Journal of Machine Learning Research 3 (2003) 1137
?
155
* Journal of Machine Learning Research 3 (2003) 1137
-1
155
*
* $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-06-22
*/
...
...
source/tensor/XName.cpp
查看文件 @
0405663f
...
...
@@ -135,6 +135,8 @@ const char * GetOPName(int type)
return
"S_SPLIT"
;
else
if
(
type
==
SHAPE_SPLIT_LIST
)
return
"S_SPLIT_LIST"
;
else
if
(
type
==
SHAPE_STACK
)
return
"S_SHAPE_STACK"
;
else
if
(
type
==
SHAPE_SQUEEZE
)
return
"S_SQUEEZE"
;
else
if
(
type
==
SHAPE_TRANSPOSE
)
...
...
source/tensor/XName.h
查看文件 @
0405663f
...
...
@@ -51,7 +51,9 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#define MATH_MASK MATH_DIVDIM + 1
#define MATH_MATRIXMUL MATH_MASK + 1
#define MATH_MATRIXMULBATCHED MATH_MATRIXMUL + 1
#define MATH_MULTIPLY MATH_MATRIXMULBATCHED + 1
#define MATH_MAX MATH_MATRIXMULBATCHED + 1
#define MATH_MIN MATH_MAX + 1
#define MATH_MULTIPLY MATH_MIN + 1
#define MATH_MULTIPLYDIM MATH_MULTIPLY + 1
#define MATH_MULTIPLYBROADCAST MATH_MULTIPLYDIM + 1
#define MATH_NEGATE MATH_MULTIPLYBROADCAST + 1
...
...
@@ -97,7 +99,8 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
#define SHAPE_RESHAPE SHAPE_PERMUTE + 1
#define SHAPE_SPLIT SHAPE_RESHAPE + 1
#define SHAPE_SPLIT_LIST SHAPE_SPLIT + 1
#define SHAPE_SQUEEZE SHAPE_SPLIT_LIST + 1
#define SHAPE_STACK SHAPE_SPLIT_LIST + 1
#define SHAPE_SQUEEZE SHAPE_STACK + 1
#define SHAPE_TRANSPOSE SHAPE_SQUEEZE + 1
#define SHAPE_UNSQUEEZE SHAPE_TRANSPOSE + 1
...
...
source/tensor/XTensor.h
查看文件 @
0405663f
...
...
@@ -28,6 +28,7 @@
#ifndef __XTENSOR_H__
#define __XTENSOR_H__
#include <math.h>
#include "XGlobal.h"
#include "XMem.h"
#include "XPRunner.h"
...
...
source/tensor/core/CHeader.h
查看文件 @
0405663f
...
...
@@ -83,6 +83,7 @@
#include "shape/Permute.h"
#include "shape/Split.h"
#include "shape/Squeeze.h"
#include "shape/Stack.h"
#include "shape/Transpose.h"
#include "shape/Unsqueeze.h"
#include "shape/IsSameShaped.h"
...
...
source/tensor/core/math/Compare.cpp
查看文件 @
0405663f
...
...
@@ -20,6 +20,7 @@
*/
#include "../../XTensor.h"
#include "../../XDevice.h"
#include "../../XName.h"
#include "../shape/IsSameShaped.h"
#include "Compare.h"
...
...
@@ -42,7 +43,7 @@ DTYPE myIsNotEqual(DTYPE a, DTYPE b)
#define _SIMPLE_COMPARE_FUNCTION(_funcName, _cudaFuncName, origFunc) \
void _funcName(const XTensor * a, XTensor * b, DTYPE number) \
{ \
CheckNTErrors((_IsSameShaped(a, b)),
\
CheckNTErrors((_IsSameShaped(a, b)), \
"Input tensors should have the same type!"); \
CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!"); \
/* run it on GPUs */
\
...
...
@@ -59,7 +60,7 @@ void _funcName(const XTensor * a, XTensor * b, DTYPE number)
#define _SIMPLE_COMPARE_FUNCTION(_funcName, origFunc) \
void _funcName(const XTensor * a, XTensor * b, DTYPE number) \
{ \
CheckNTErrors((_IsSameShaped(a, b)),
\
CheckNTErrors((_IsSameShaped(a, b)), \
"Input tensors should have the same type!"); \
CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!"); \
/* run it on GPUs */
\
...
...
@@ -97,8 +98,8 @@ XTensor funcName(const XTensor &a, DTYPE number)
#define SIMPLE_COMPARE_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, XTensor &b, DTYPE number) \
{ \
if (!b.isInit || !IsSameShaped(a, b)) { \
InitTensorV2(&b, &a);
\
if (!b.isInit || !IsSameShaped(a, b)) {
\
InitTensorV2(&b, &a); \
} \
_funcName(&a, &b, number); \
}
...
...
@@ -124,4 +125,95 @@ SIMPLE_COMPARE_FUNCTION_ME(NotEqualMe, _NotEqual)
SIMPLE_COMPARE_FUNCTION
(
NotEqual
,
_NotEqual
,
MATH_NOTEQUAL
)
SIMPLE_COMPARE_FUNCTION_VOID
(
NotEqual
,
_NotEqual
,
MATH_NOTEQUAL
)
/* define three marco separately, specify the respective function names */
#ifdef USE_CUDA
#define _SIMPLE_MAX_MIN_FUNCTION(_funcName, _cudaFuncName, origFunc) \
void _funcName(const XTensor * a, const XTensor * b, XTensor * c) \
{ \
CheckNTErrors((_IsSameShaped(a, b, c)), \
"Input and output tensors should have the same type!"); \
CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!"); \
CheckDev(a->devID, b->devID); \
CheckDev(a->devID, c->devID); \
/* run it on GPUs */
\
if (a->devID >= 0) { \
_cudaFuncName(a, b, c); \
return; \
} \
DTYPE * da = (DTYPE*)a->data; \
DTYPE * db = (DTYPE*)b->data; \
DTYPE * dc = (DTYPE*)c->data; \
for (int i = 0; i < a->unitNum; i++) \
dc[i] = (DTYPE)origFunc(da[i], db[i]); \
}
#else
#define _SIMPLE_MAX_MIN_FUNCTION(_funcName, origFunc) \
void _funcName(const XTensor * a, const XTensor * b, XTensor *c) \
{ \
CheckNTErrors((_IsSameShaped(a, b, c)), \
"Input and output tensors should have the same type!"); \
CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!"); \
CheckDev(a, b); \
CheckDev(a, c); \
/* run it on GPUs */
\
if (a->devID >= 0) { \
ShowNTErrors("No GPU devices support!") \
} \
DTYPE * da = (DTYPE*)a->data; \
DTYPE * db = (DTYPE*)b->data; \
DTYPE * dc = (DTYPE*)c->data; \
for (int i = 0; i < a->unitNum; i++) \
dc[i] = (DTYPE)origFunc(da[i], db[i]); \
}
#endif
#define _SIMPLE_MAX_MIN_FUNCTION_ME(_funcNameMe, _funcName) \
void _funcNameMe(XTensor * a, const XTensor * b) \
{ \
_funcName(a, b, a); \
}
#define SIMPLE_MAX_MIN_FUNCTION_ME(funcNameMe, _funcName) \
void funcNameMe(XTensor & a, const XTensor & b) \
{ \
_funcName(&a, &b, &a); \
}
#define SIMPLE_MAX_MIN_FUNCTION(funcName, _funcName, operationId) \
XTensor funcName(const XTensor & a, const XTensor & b) \
{ \
XTensor c(&a); \
c.SetTMPFlag(); \
_funcName(&a, &b, &c); \
return c; \
}
#define SIMPLE_MAX_MIN_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, const XTensor &b, XTensor c) \
{ \
if (!c.isInit || !_IsSameShaped(&a, &c)) { \
InitTensor(&c, &a); \
} \
_funcName(&a, &b, &c); \
}
#ifdef USE_CUDA
_SIMPLE_MAX_MIN_FUNCTION
(
_Max
,
_CudaMax
,
max
)
_SIMPLE_MAX_MIN_FUNCTION
(
_Min
,
_CudaMin
,
min
)
#else
_SIMPLE_MAX_MIN_FUNCTION
(
_Max
,
max
)
_SIMPLE_MAX_MIN_FUNCTION
(
_Min
,
min
)
#endif
_SIMPLE_MAX_MIN_FUNCTION_ME
(
_MaxMe
,
_Max
)
SIMPLE_MAX_MIN_FUNCTION_ME
(
MaxMe
,
_Max
)
SIMPLE_MAX_MIN_FUNCTION
(
Max
,
_Max
,
MATH_MAX
)
SIMPLE_MAX_MIN_FUNCTION_VOID
(
Max
,
_Max
,
MATH_MAX
)
_SIMPLE_MAX_MIN_FUNCTION_ME
(
_MinMe
,
_Min
)
SIMPLE_MAX_MIN_FUNCTION_ME
(
MinMe
,
_Min
)
SIMPLE_MAX_MIN_FUNCTION
(
Min
,
_Min
,
MATH_MIN
)
SIMPLE_MAX_MIN_FUNCTION_VOID
(
Min
,
_Min
,
MATH_MIN
)
}
//
namespace
nts
(
NiuTrans
.
Tensor
)
\ No newline at end of file
source/tensor/core/math/Compare.cu
查看文件 @
0405663f
...
...
@@ -89,6 +89,53 @@ void _Cuda##funcName(const XTensor * a, XTensor * b, DTYPE number) \
SIMPLE_COMPARE_FUNCTION_GPU(Equal, cudaIsEqual)
SIMPLE_COMPARE_FUNCTION_GPU(NotEqual, cudaIsNotEqual)
#define SIMPLE_MAX_MIN_FUNCTION_GPU(funcName, origFunc) \
__global__ \
void Kernel##funcName(DTYPE * a, DTYPE * b, DTYPE * c, int size) \
{ \
int i = blockDim.x * blockIdx.x + threadIdx.x; \
\
if (i < size) \
c[i] = (DTYPE)origFunc(a[i], b[i]); \
} \
__global__ \
void Kernel##funcName(__half * a, __half * b, __half * c, int size) \
{ \
return; \
} \
void _Cuda##funcName(const XTensor * a, const XTensor * b, XTensor * c) \
{ \
\
int gridSize[3]; \
int blockSize[3]; \
\
GDevs.GetCudaThread(a->devID, a->unitNum, gridSize, blockSize); \
\
dim3 blocks(gridSize[0]); \
dim3 threads(blockSize[0]); \
\
int devIDBackup; \
ProtectCudaDev(a->devID, devIDBackup); \
\
if (a->dataType == DEFAULT_DTYPE) { \
Kernel##funcName<<<blocks, threads>>> \
((DTYPE*)a->data, (DTYPE*)b->data, \
(DTYPE*)c->data, a->unitNum); \
} \
else if (a->dataType == X_FLOAT16) { \
Kernel##funcName<<<blocks, threads>>> \
((__half*)a->data, (__half*)b->data, \
(__half*)c->data, a->unitNum); \
} \
else { \
ShowNTErrors("TODO!"); \
} \
\
BacktoCudaDev(a->devID, devIDBackup); \
}
SIMPLE_MAX_MIN_FUNCTION_GPU(Max, max)
SIMPLE_MAX_MIN_FUNCTION_GPU(Min, min)
#endif // USE_CUDA
...
...
source/tensor/core/math/Compare.cuh
查看文件 @
0405663f
...
...
@@ -34,6 +34,12 @@ void _CudaEqual(const XTensor * a, XTensor * b, DTYPE value);
/* check whether every entry is not equal to the given value (cuda version) */
void _CudaNotEqual(const XTensor * a, XTensor * b, DTYPE value);
/* return maximum of two tensor for each items (cuda version) */
void _CudaMax(const XTensor * a, const XTensor * b, XTensor *c);
/* return minimum of two tensor for each items (cuda version) */
void _CudaMin(const XTensor * a, const XTensor * b, XTensor *c);
#endif // USE_CUDA
} // namespace nts(NiuTrans.Tensor)
...
...
source/tensor/core/math/Compare.h
查看文件 @
0405663f
...
...
@@ -56,6 +56,36 @@ XTensor NotEqual(const XTensor & a, DTYPE value);
/* check whether every entry is not equal to the given value */
void
NotEqual
(
const
XTensor
&
a
,
XTensor
&
b
,
DTYPE
value
);
/* return maximum of two tensor for each items */
void
_Max
(
const
XTensor
*
a
,
const
XTensor
*
b
,
XTensor
*
c
);
/* return maximum of two tensor for each items (do it on site) */
void
_MaxMe
(
XTensor
*
a
,
const
XTensor
*
b
);
/* return maximum of two tensor for each items (do it on site) */
void
MaxMe
(
XTensor
&
a
,
const
XTensor
&
b
);
/* return maximum of two tensor for each items (return an XTensor structure) */
XTensor
Max
(
const
XTensor
&
a
,
const
XTensor
&
b
);
/* return maximum of two tensor for each items */
void
Max
(
const
XTensor
&
a
,
const
XTensor
&
b
,
XTensor
&
c
);
/* return minimum of two tensor for each items */
void
_Min
(
const
XTensor
*
a
,
const
XTensor
*
b
,
XTensor
*
c
);
/* return minimum of two tensor for each items (do it on site) */
void
_MinMe
(
XTensor
*
a
,
const
XTensor
*
b
);
/* return minimum of two tensor for each items (do it on site) */
void
MinMe
(
XTensor
&
a
,
const
XTensor
&
b
);
/* return minimum of two tensor for each items (return an XTensor structure) */
XTensor
Min
(
const
XTensor
&
a
,
const
XTensor
&
b
);
/* return minimum of two tensor for each items */
void
Min
(
const
XTensor
&
a
,
const
XTensor
&
b
,
XTensor
&
c
);
}
// namespace nts(NiuTrans.Tensor)
#endif // end __COMPARE_H__
\ No newline at end of file
source/tensor/core/shape/Stack.cpp
0 → 100644
查看文件 @
0405663f
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2019-10-13
*/
#include "Stack.h"
#include "IsSameShaped.h"
#include "../../XUtility.h"
#include "../../XName.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/* stack small tensors into a big tensor along with a dimension */
void
_Stack
(
const
TensorList
*
smalls
,
XTensor
*
t
,
int
dim
)
{
dim
=
(
dim
<
0
?
t
->
order
-
1
:
dim
);
int
count
=
smalls
->
count
;
CheckNTErrors
(
smalls
!=
NULL
,
"Invalid list!"
);
CheckNTErrors
(
count
>
0
,
"Empty list!"
);
CheckNTErrors
(
dim
>=
0
&&
dim
<
t
->
order
,
"Wrong range of dim"
);
for
(
int
i
=
1
;
i
<
count
;
i
++
)
{
XTensor
*
tmp1
=
smalls
->
GetItem
(
i
);
XTensor
*
tmp2
=
smalls
->
GetItem
(
i
-
1
);
CheckNTErrors
(
_IsSameShaped
(
tmp1
,
tmp2
),
"The input tensor must be same size!"
);
}
int
blockSize
=
1
;
int
blockNum
=
1
;
int
gridSize
=
1
;
int
gridNum
=
1
;
XTensor
*
smallsItem0
=
smalls
->
GetItem
(
0
);
int
unitNum
=
smallsItem0
->
unitNum
;
int
unitSize
=
smallsItem0
->
unitSize
;
int
itemSize
=
unitNum
*
unitSize
;
for
(
int
i
=
0
;
i
<
smallsItem0
->
order
;
i
++
)
{
if
(
i
>=
dim
)
blockSize
*=
smallsItem0
->
dimSize
[
i
];
else
blockNum
*=
smallsItem0
->
dimSize
[
i
];
}
/* merging with fewer data copy operations */
if
(
count
*
gridNum
<=
MIN_TENSOR_MERGE_LIST_NUM
)
{
int
sPitch
=
blockSize
*
unitSize
;
int
tPtich
=
blockSize
*
count
*
unitSize
;
int
mSize
=
blockSize
*
unitSize
;
int
n
=
blockNum
;
int
sStep
=
0
;
int
tStep
=
blockSize
*
unitSize
;
char
*
tData
=
(
char
*
)
t
->
data
;
for
(
int
k
=
0
;
k
<
count
;
k
++
)
{
XTensor
*
s
=
smalls
->
GetItem
(
k
);
char
*
sData
=
(
char
*
)
s
->
data
;
XMemCopy2D
(
tData
+
k
*
tStep
,
tPtich
,
t
->
devID
,
sData
+
k
*
sStep
,
sPitch
,
s
->
devID
,
mSize
,
n
);
}
}
else
{
ShowNTErrors
(
"TO DO!!!"
);
}
}
/* stack small tensors into a big tensor along with a dimension (return an XTensor structure) */
XTensor
Stack
(
const
TensorList
&
smalls
,
int
dim
)
{
int
count
=
smalls
.
count
;
CheckNTErrors
(
count
>
0
,
"Empty list!"
);
CheckNTErrors
(
dim
>=
0
,
"Illegal dimension to concatenate!"
);
XTensor
*
tensor
=
smalls
.
GetItem
(
0
);
int
order
=
tensor
->
order
+
1
;
int
*
dimSize
=
new
int
[
order
];
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
dim
)
dimSize
[
i
]
=
tensor
->
GetDim
(
i
);
else
if
(
i
>
dim
)
dimSize
[
i
]
=
tensor
->
GetDim
(
i
);
else
if
(
i
==
dim
)
dimSize
[
i
]
=
count
;
}
float
dr
=
(
!
tensor
->
isSparse
)
?
1.0
F
:
tensor
->
denseRatio
;
XTensor
t
(
order
,
dimSize
,
tensor
->
dataType
,
dr
,
tensor
->
devID
,
tensor
->
mem
);
t
.
SetTMPFlag
();
/* destroy variables */
delete
[]
dimSize
;
/* call _Stack function */
_Stack
(
&
smalls
,
&
t
,
dim
);
/* tensor connection */
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
XTensor
*
tmp
=
smalls
.
GetItem
(
i
);
if
(
tmp
->
enableGrad
==
false
)
return
t
;
}
XLink
::
MakeLink
(
&
smalls
,
&
t
,
SHAPE_STACK
);
XLink
::
AddParamToHeadInt
(
&
t
,
dim
);
return
t
;
}
/* check the shape of target tensor */
bool
CheckStackShape
(
const
TensorList
&
smalls
,
XTensor
&
t
,
int
dim
)
{
XTensor
*
tensor
=
(
XTensor
*
)
smalls
.
GetItem
(
0
);
int
order
=
tensor
->
order
;
for
(
int
i
=
0
;
i
<
tensor
->
order
;
i
++
)
{
if
(
i
<
dim
)
if
(
t
.
GetDim
(
i
)
!=
tensor
->
GetDim
(
i
))
return
false
;
else
if
(
i
>
dim
)
if
(
t
.
GetDim
(
i
)
!=
tensor
->
GetDim
(
i
-
1
))
return
false
;
else
if
(
i
==
dim
)
if
(
t
.
GetDim
(
i
)
!=
smalls
.
count
)
return
false
;
}
return
true
;
}
/* stack small tensors into a big tensor along with a dimension */
void
Stack
(
const
TensorList
&
smalls
,
XTensor
&
t
,
int
dim
)
{
int
count
=
smalls
.
count
;
CheckNTErrors
(
count
>
0
,
"Empty list!"
);
CheckNTErrors
(
dim
>=
0
,
"Illegal dimension to concatenate!"
);
if
(
!
t
.
isInit
||
!
CheckStackShape
(
smalls
,
t
,
dim
))
{
XTensor
*
tensor
=
smalls
.
GetItem
(
0
);
int
order
=
tensor
->
order
+
1
;
int
*
dimSize
=
new
int
[
order
];
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
dim
)
dimSize
[
i
]
=
tensor
->
GetDim
(
i
);
else
if
(
i
>
dim
)
dimSize
[
i
]
=
tensor
->
GetDim
(
i
-
1
);
else
if
(
i
==
dim
)
dimSize
[
i
]
=
count
;
}
float
dr
=
(
!
tensor
->
isSparse
)
?
1.0
F
:
tensor
->
denseRatio
;
InitTensorV2
(
&
t
,
order
,
dimSize
,
tensor
->
dataType
,
dr
,
tensor
->
devID
,
tensor
->
mem
);
/* destroy variables */
delete
[]
dimSize
;
}
/* call _Stack function */
_Stack
(
&
smalls
,
&
t
,
dim
);
/* tensor connection */
for
(
int
i
=
0
;
i
<
count
;
i
++
)
{
XTensor
*
tmp
=
smalls
.
GetItem
(
i
);
if
(
tmp
->
enableGrad
==
false
)
return
;
}
XLink
::
MakeLink
(
&
smalls
,
&
t
,
SHAPE_STACK
);
XLink
::
AddParamToHeadInt
(
&
t
,
dim
);
}
}
// namespace nts(NiuTrans.Tensor)
source/tensor/core/shape/Stack.h
0 → 100644
查看文件 @
0405663f
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2019-10-13
* It's so cold outside. It's too hard for me to get out.
*/
#ifndef __STACK_H__
#define __STACK_H__
#include "../../XTensor.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/* stack small tensors into a big tensor along with a dimension */
void
_Stack
(
const
TensorList
*
smalls
,
XTensor
*
t
,
int
dim
);
/* stack small tensors into a big tensor along with a dimension (return an XTensor structure) */
XTensor
Stack
(
const
TensorList
&
list
,
int
leadingDim
);
/* stack small tensors into a big tensor along with a dimension */
void
Stack
(
const
TensorList
&
smalls
,
XTensor
&
t
,
int
dim
);
}
// namespace nts(NiuTrans.Tensor)
#endif // __STACK_H__
\ No newline at end of file
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论