Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
R
ReadingList
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
zengxin
ReadingList
Commits
c1e0911a
Commit
c1e0911a
authored
Jun 05, 2022
by
zengxin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
new
parent
539c46de
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
3 行增加
和
3 行删除
+3
-3
长序列transformer/readme.md
+3
-3
没有找到文件。
长序列transformer/readme.md
查看文件 @
c1e0911a
Trans
former针对长序列问题的改进,主要有两种思路,一种是通过分段递归机制维护长序列的上下文信息,另一种是使用更高效的注意力机制。第一类方法比较有代表性的工作有transformer-xl(2019),该方法虽然为模型赋予了处理长序列的能力,但是此类方法的时间和空间复杂度依然较高。
Trans
former针对长序列问题的改进,主要有两种思路,一种是通过分段递归机制维护长序列的上下文信息,另一种是使用更高效的注意力机制。第一类方法比较有代表性的工作有transformer-xl(2019),该方法虽然为模型赋予了处理长序列的能力,但是此类方法的时间和空间复杂度依然较高。
...
...
@@ -2,8 +2,8 @@ Transformer针对长序列问题的改进,主要有两种思路,一种是通
第二类方法,即针对注意力机制的改进又可以分为:
*
使用低秩矩阵或核函数的思想构建复杂度更低的注意力机制,相关工作有 Linformer(2020)、Linear Transformer(2020)和 Random Feature Attention(2021)。Softmax 注意力机制的复杂度
$O (n^2)$
来源于softmax函数,因此这类方法的主要思想是使用别的方法来替代softmax函数,降低注意力机制的复杂度。其中 Linformer 对 K 和 V 应用核方法降低序列维度,但该操作同时也把整个序列的信息柔和在了一起,因此没办法对未来信息进行 Mask,无法做语言模型、seq2seq 等任务。而 Random Feature Attention 没有这方面的问题,该方法采用循环神经网络的思想,在模型的每个时间步都维护一个蕴含历史信息的隐层向量,以此达到只使用 prefix 信息的目的【与Mask效果相同】。
*
改进注意力的计算过程,相关工作有 luna (2021) 和 less memory (2022) 。其中 luna 将注意力的过程拆分为两个阶段,第一个阶段先使用一个注意力得到一个固定长度的结果(长度小于句长n,类似于压缩的思想),第二个阶段再使用一次注意力计算对压缩的结果进行注意力计算,该方法可以与别的注意力改进方法相结合。less memory 将 QKV 拆分成子片段,依次对这些片段进行注意力计算,再将结果合并,以降低注意力所需要的内存,该方法的不足是其时间复杂度仍然为
$O (n^2)$
。
*
使用低秩矩阵或核函数的思想构建复杂度更低的注意力机制,相关工作有 Linformer(2020)、Linear Transformer(2020)和 Random Feature Attention(2021)。Softmax 注意力机制的复杂度
$O (n^2)$
来源于softmax函数,因此这类方法的主要思想是使用别的方法来替代softmax函数,降低注意力机制的复杂度。其中 Linformer 对 K 和 V 应用核方法降低序列维度,但该操作同时也把整个序列的信息柔和在了一起,因此没办法对未来信息进行 Mask,无法做语言模型、seq2seq 等任务。而 Random Feature Attention 没有这方面的问题,该方法采用循环神经网络的思想,在模型的每个时间步都维护一个蕴含历史信息的隐层向量,以此达到只使用 prefix 信息的目的【与Mask效果相同】。
*
改进注意力的计算过程,相关工作有 luna (2021) 和 less memory (2022) 。其中 luna 将注意力的过程拆分为两个阶段,第一个阶段先使用一个注意力得到一个固定长度的结果(长度小于句长n,类似于压缩的思想),第二个阶段再使用一次注意力计算对压缩的结果进行注意力计算,该方法可以与别的注意力改进方法相结合。less memory 将 QKV 拆分成子片段,依次对这些片段进行注意力计算,再将结果合并,以降低注意力所需要的内存,该方法的不足是其时间复杂度仍然为
$O (n^2)$
。
*
此外还有其他改进方法,相关工作有 Reformer(2020) 和 Big bird(2020) 。其中 Reformer 使用局部哈希敏感注意力机制,该方法复杂度高,复现困难,只有当序列长度大于 2048 时才会有效率提升。与Reformer 相较而言,Big bird 更加优秀。
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论