figure-one-best-node-alignment-and-alignment-matrix.tex 5.87 KB
Newer Older
曹润柘 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
\newcommand{\PreserveBackslash}[1]{\let\temp=\\#1\let\\=\temp}
\newcolumntype{C}[1]{>{\PreserveBackslash\centering}p{#1}}
\newcolumntype{R}[1]{>{\PreserveBackslash\raggedleft}p{#1}}
\newcolumntype{L}[1]{>{\PreserveBackslash\raggedright}p{#1}}

\begin{flushright}
\begin{tikzpicture}

\begin{scope}[scale=0.47]

{\Large
\begin{scope}[sibling distance=17pt, level distance = 35pt]
\Tree[.\node(en1){VP$^{[1]}$};
        [.\node(en2){VBZ$^{[2]}$}; have ]
        [.\node(en3){ADVP$^{[3]}$};
            [.\node(en4){RB$^{[4]}$}; drastically ]
            [.\node(en5){VBN$^{[5]}$}; fallen ]
        ]
     ]
\end{scope}

\begin{scope}[grow'=up, yshift=-3.3in, sibling distance=32pt, level distance = 35pt]
\Tree[.\node(cn1){VP$^{[1]}$};
        [.\node(cn2){AD$^{[2]}$}; 大幅度 ]
        [.\node(cn3){VP$^{[3]}$};
            [.\node(cn4){VV$^{[4]}$}; 减少 ]
            [.\node(cn5){AS$^{[5]}$}; 了 ]
        ]
     ]
\end{scope}
}

\begin{scope}[xshift=2.3in, yshift=-0.3in]
\node[anchor=west, rotate=60] at (0.8,-0.6) {VP$^{[1]}$};
\node[anchor=west, rotate=60] at (1.8,-0.6) {VBZ$^{[2]}$};
\node[anchor=west, rotate=60] at (2.8,-0.6) {ADVP$^{[3]}$};
\node[anchor=west, rotate=60] at (3.8,-0.6) {RB$^{[4]}$};
\node[anchor=west, rotate=60] at (4.8,-0.6) {VBN$^{[5]}$};

\node[] at (6.5,-1) {VP$^{[1]}$};
\node[] at (6.5,-2) {AD$^{[2]}$};
\node[] at (6.5,-3) {VP$^{[3]}$};
\node[] at (6.5,-4) {VV$^{[4]}$};
\node[] at (6.5,-5) {AS$^{[5]}$};

\foreach \i in {1,...,5}{
    \foreach \j in {-5,...,-1}{
        \node[fill=blue!40,scale=0.2] at (\i,\j) {};
    }
}

\node[fill=blue!40, scale=1.1, inner sep=1pt, minimum size=12pt] at (1,-1) {{\color{white} 1}};
\node[fill=blue!40, scale=1.1, inner sep=1pt, minimum size=12pt] at (2,-5) {{\color{white} 1}};
\node[fill=blue!40, scale=1.1, inner sep=1pt, minimum size=12pt] at (4,-2) {{\color{white} 1}};
\node[fill=blue!40, scale=1.1, inner sep=1pt, minimum size=12pt] at (5,-4) {{\color{white} 1}};

\node[] at (4,-6.3) {{\color{blue!40} $\blacksquare$} = fixed alignment};
\node[] at (4,-7.2) {Matrix 1: 1-best alignment};

\end{scope}

\begin{scope}[xshift=6.1in, yshift=-0.3in]
\node[anchor=west, rotate=60] at (0.8,-0.6) {VP$^{[1]}$};
\node[anchor=west, rotate=60] at (1.8,-0.6) {VBZ$^{[2]}$};
\node[anchor=west, rotate=60] at (2.8,-0.6) {ADVP$^{[3]}$};
\node[anchor=west, rotate=60] at (3.8,-0.6) {RB$^{[4]}$};
\node[anchor=west, rotate=60] at (4.8,-0.6) {VBN$^{[5]}$};

\node[] at (6.5,-1) {VP$^{[1]}$};
\node[] at (6.5,-2) {AD$^{[2]}$};
\node[] at (6.5,-3) {VP$^{[3]}$};
\node[] at (6.5,-4) {VV$^{[4]}$};
\node[] at (6.5,-5) {AS$^{[5]}$};

\foreach \i in {1,...,5}{
    \foreach \j in {-5,...,-1}{
        \node[fill=blue!40,scale=0.2] at (\i,\j) {};
    }
}

\node[fill=blue!40, scale=1.1, inner sep=1pt, minimum size=12pt] at (1,-1) {{\color{white} \small{.9}}};
\node[fill=blue!40, scale=0.5, inner sep=1pt, minimum size=12pt] at (1,-3) {{\color{white} \small{.1}}};
\node[fill=blue!40, scale=0.5, inner sep=1pt, minimum size=12pt] at (2,-2) {{\color{white} \small{.1}}};
\node[fill=blue!40, scale=0.8, inner sep=1pt, minimum size=12pt] at (2,-3) {{\color{white} \small{.6}}};
\node[fill=blue!40, scale=0.8, inner sep=1pt, minimum size=12pt] at (2,-5) {{\color{white} \small{.6}}};
\node[fill=blue!40, scale=0.5, inner sep=1pt, minimum size=12pt] at (3,-1) {{\color{white} \small{.1}}};
\node[fill=blue!40, scale=0.5, inner sep=1pt, minimum size=12pt] at (3,-2) {{\color{white} \small{.1}}};
\node[fill=blue!40, scale=0.5, inner sep=1pt, minimum size=12pt] at (3,-3) {{\color{white} \small{.1}}};
\node[fill=blue!40, scale=1.0, inner sep=1pt, minimum size=12pt] at (4,-2) {{\color{white} \small{.8}}};
\node[fill=blue!40, scale=0.6, inner sep=1pt, minimum size=12pt] at (5,-3) {{\color{white} \small{.2}}};
\node[fill=blue!40, scale=0.7, inner sep=1pt, minimum size=12pt] at (5,-5) {{\color{white} \small{.4}}};
\node[fill=blue!40, scale=0.65, inner sep=1pt, minimum size=12pt] at (3,-4) {{\color{white} \small{.3}}};
\node[fill=blue!40, scale=0.9, inner sep=1pt, minimum size=12pt] at (5,-4) {{\color{white} \small{.7}}};

\node[] at (4,-6.3) {{\color{blue!40} $\blacksquare$} = possible alignment};
\node[] at (4,-7.2) {Matrix 2: posterior};

\node[] at (9,-7.2) {};%占位符
\end{scope}

\end{scope}

\end{tikzpicture}
\\[0.8em]
\end{flushright}
\begin{center}
\vspace{-1em}
\footnotesize{(a)节点对齐矩阵(1-best vs. Matrix)}
\end{center}

\begin{center}
\begin{tabular}[t]{C{0.48\linewidth} C{0.48\linewidth} }

\begin{tabular}{l L{150pt}}
\multicolumn{2}{l}{\textbf{\footnotesize{Minimal Rules}}} \\
\multicolumn{2}{l}{\textbf{\footnotesize{Extracted from Matrix 1 (1-best)}}} \\
\hline
\footnotesize{$r_3$} & \footnotesize{AD(大幅度) $\rightarrow$ RB(drastically)} \\
\footnotesize{$r_4$} & \footnotesize{VV(减少) $\rightarrow$ VBN(fallen)} \\
\footnotesize{$r_6$} & \footnotesize{AS() $\rightarrow$ VBZ(have)} \\
\footnotesize{$r_8$} & \footnotesize{VP(AD$_1$ VP(VV$_2$ AS$_3$)) $\rightarrow$} \\
                     & \footnotesize{VP(VBZ$_3$ ADVP(RB$_1$ VBN$_2$)} \\
\rule{0pt}{11pt} \\
\\
\\
\end{tabular}

&

\begin{tabular}{l L{150pt}}
\multicolumn{2}{l}{\textbf{\small{Minimal Rules}}} \\
\multicolumn{2}{l}{\textbf{\small{Extracted from Matrix 2 (posterior)}}} \\
\hline
\footnotesize{$r_3$} & \footnotesize{AD(大幅度) $\rightarrow$ RB(drastically)} \\
\footnotesize{$r_4$} & \footnotesize{VV(减少) $\rightarrow$ VBN(fallen)} \\
\footnotesize{$r_6$} & \footnotesize{AS() $\rightarrow$ VBZ(have)} \\
\footnotesize{$r_8$} & \footnotesize{VP(AD$_1$ VP(VV$_2$ AS$_3$)) $\rightarrow$} \\
                     & \footnotesize{VP(VBZ$_3$ ADVP(RB$_1$ VBN$_2$)} \\
\footnotesize{$r_{10}$} & \footnotesize{VP(VV(减少) AS()) $\rightarrow$ VBN(fallen)} \\
\footnotesize{$r_{11}$} & \footnotesize{VP(AD$_1$ VP$_2$) $\rightarrow$ VP(VBZ$_1$ ADVP$_2$)} \\
\footnotesize{...}\\
\end{tabular}

\\

\end{tabular}

\begin{center}
\vspace{-2em}
\footnotesize{(b) 抽取得到的树到树翻译规则}
\end{center}

\end{center}