Commit 6d268143 by 曹润柘

合并分支 'master' 到 'caorunzhe'

Master

查看合并请求 !842
parents fc92716a b62f332c
......@@ -335,13 +335,13 @@ p_0+p_1 & = & 1 \label{eq:6-21}
\parinterval 另外,可以用$\odot_{i}$表示位置为$[i]$的目标语言单词对应的那些源语言单词位置的平均值,如果这个平均值不是整数则对它向上取整。比如在本例中,目标语句中第4个cept. (“.”)对应在源语言句子中的第5个单词。可表示为${\odot}_{4}=5$
\parinterval 利用这些新引进的概念,模型4对模型3的扭曲度进行了修改。主要是把扭曲度分解为两类参数。对于$[i]$对应的源语言单词列表($\tau_{[i]}$)中的第一个单词($\tau_{[i]1}$),它的扭曲度用如下公式计算:
\parinterval 利用这些新引进的概念,模型4对模型3的扭曲度进行了修改。主要是把扭曲度分解为两类参数。对于$[i]$对应的源语言单词列表($\tau_{[i]}$)中的第一个单词($\tau_{[i]1}$),$[i]>0$它的扭曲度用如下公式计算:
\begin{eqnarray}
\funp{P}(\pi_{[i]1}=j|{\pi}_1^{[i]-1},{\tau}_0^l,{\varphi}_0^l,\seq{t}) & = & d_{1}(j-{\odot}_{i-1}|A(t_{[i-1]}),B(s_j))
\label{eq:6-22}
\end{eqnarray}
\noindent 其中,第$i$个目标语言单词生成的第$k$个源语言单词的位置用变量$\pi_{ik}$表示。而对于列表($\tau_{[i]}$)中的其他的单词($\tau_{[i]k},1 < k \le \varphi_{[i]}$)的扭曲度,用如下公式计算:
\noindent 其中,第$i$个目标语言单词生成的第$k$个源语言单词的位置用变量$\pi_{ik}$表示。而对于列表($\tau_{[i]}$)中的其他的单词($\tau_{[i]k},1 < k \le \varphi_{[i]}$)的扭曲度,$[i]>0$用如下公式计算:
\begin{eqnarray}
\funp{P}(\pi_{[i]k}=j|{\pi}_{[i]1}^{k-1},\pi_1^{[i]-1},\tau_0^l,\varphi_0^l,\seq{t}) & = & d_{>1}(j-\pi_{[i]k-1}|B(s_j))
......
......@@ -652,14 +652,14 @@ dr & = & {\rm{start}}_i-{\rm{end}}_{i-1}-1
\parinterval 想要得到最优的特征权重,最简单的方法是枚举所有特征权重可能的取值,然后评价每组权重所对应的翻译性能,最后选择最优的特征权重作为调优的结果。但是特征权重是一个实数值,因此可以考虑把实数权重进行量化,即把权重看作是在固定间隔上的取值,比如,每隔0.01取值。即使是这样,同时枚举多个特征的权重也是非常耗时的工作,当特征数量增多时这种方法的效率仍然很低。
\parinterval 这里介绍一种更加高效的特征权重调优方法$\ \dash \ ${\small\bfnew{最小错误率训练}}\index{最小错误率训练}(Minimum Error Rate Training\index{Minimum Error Rate Training},MERT)。最小错误率训练是统计机器翻译发展中代表性工作,也是机器翻译领域原创的重要技术方法之一\upcite{DBLP:conf/acl/Och03}。最小错误率训练假设:翻译结果相对于标准答案的错误是可度量的,进而可以通过降低错误数量的方式来找到最优的特征权重。假设有样本集合$S = \{(s^{[1]},\seq{r}^{[1]}),...,(s^{[N]},\seq{r}^{[N]})\}$$s^{[i]}$为样本中第$i$个源语言句子,$\seq{r}^{[i]}$为相应的参考译文。注意,$\seq{r}^{[i]}$ 可以包含多个参考译文。$S$通常被称为{\small\bfnew{调优集合}}\index{调优集合}(Tuning Set)\index{Tuning Set}。对于$S$中的每个源语句子$s^{[i]}$,机器翻译模型会解码出$n$-best推导$\hat{\seq{d}}_{i} = \{\hat{d}_{ij}\}$,其中$\hat{d}_{ij}$表示对于源语言句子$s^{[i]}$得到的第$j$个最好的推导。$\{\hat{d}_{ij}\}$可以被定义如下:
\parinterval 这里介绍一种更加高效的特征权重调优方法$\ \dash \ ${\small\bfnew{最小错误率训练}}\index{最小错误率训练}(Minimum Error Rate Training\index{Minimum Error Rate Training},MERT)。最小错误率训练是统计机器翻译发展中代表性工作,也是机器翻译领域原创的重要技术方法之一\upcite{DBLP:conf/acl/Och03}。最小错误率训练假设:翻译结果相对于标准答案的错误是可度量的,进而可以通过降低错误数量的方式来找到最优的特征权重。假设有样本集合$S = \{(s^{[1]},\seq{r}^{[1]}),...,(s^{[N]},\seq{r}^{[N]})\}$$s^{[i]}$为样本中第$i$个源语言句子,$\seq{r}^{[i]}$为相应的参考译文。注意,$\seq{r}^{[i]}$ 可以包含多个参考译文。$S$通常被称为{\small\bfnew{调优集合}}\index{调优集合}(Tuning Set)\index{Tuning Set}。对于$S$中的每个源语句子$s^{[i]}$,机器翻译模型会解码出$n$-best推导$\hat{\seq{d}}^{[i]} = \{\hat{d}_{j}^{[i]}\}$,其中$\hat{d}_{j}^{[i]}$表示对于源语言句子$s^{[i]}$得到的第$j$个最好的推导。$\{\hat{d}_{j}^{[i]}\}$可以被定义如下:
\begin{eqnarray}
\{\hat{d}_{ij}\} & = & \arg\max_{\{d_{ij}\}} \sum_{i=1}^{M} \lambda_i \cdot h_i (d,\seq{t},\seq{s})
\{\hat{d}_{j}^{[i]}\} & = & \arg\max_{\{d_{j}^{[i]}\}} \sum_{i=1}^{M} \lambda_i \cdot h_i (d,\seq{t}^{[i]},\seq{s}^{[i]})
\label{eq:7-17}
\end{eqnarray}
\parinterval 对于每个样本都可以得到$n$-best推导集合,整个数据集上的推导集合被记为$\hat{\seq{D}} = \{\hat{\seq{d}}_{1},...,\hat{\seq{d}}_{s}\}$。进一步,令所有样本的参考译文集合为$\seq{R} = \{\seq{r}_1,...,\seq{r}_N\}$。最小错误率训练的目标就是降低$\hat{\seq{D}}$相对于$\seq{R}$的错误。也就是,通过调整不同特征的权重$\lambda = \{ \lambda_i \}$,让错误率最小,形式化描述为:
\parinterval 对于每个样本都可以得到$n$-best推导集合,整个数据集上的推导集合被记为$\hat{\seq{D}} = \{\hat{\seq{d}}^{[1]},...,\hat{\seq{d}}^{[N]}\}$。进一步,令所有样本的参考译文集合为$\seq{R} = \{\seq{r}^{[1]},...,\seq{r}^{[N]}\}$。最小错误率训练的目标就是降低$\hat{\seq{D}}$相对于$\seq{R}$的错误。也就是,通过调整不同特征的权重$\lambda = \{ \lambda_i \}$,让错误率最小,形式化描述为:
\begin{eqnarray}
\hat{\lambda} & = & \arg\min_{\lambda} \textrm{Error}(\hat{\seq{D}},\seq{R})
\label{eq:7-18}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论