Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
b9b1020b
Commit
b9b1020b
authored
Nov 25, 2020
by
zengxin
Browse files
Options
Browse Files
Download
Plain Diff
合并分支 'zengxin' 到 'caorunzhe'
Zengxin 查看合并请求
!470
parents
12cb6a07
cf9b4cdb
全部展开
隐藏空白字符变更
内嵌
并排
正在显示
10 个修改的文件
包含
145 行增加
和
49 行删除
+145
-49
Chapter11/Figures/figure-fairseq-0.tex
+3
-3
Chapter11/Figures/figure-fairseq-2.tex
+3
-3
Chapter11/Figures/figure-fairseq-3.tex
+3
-3
Chapter11/Figures/figure-max-pooling.tex
+2
-2
Chapter11/Figures/figure-single-glu.tex
+5
-4
Chapter11/Figures/figure-standard.tex
+1
-1
Chapter11/Figures/figure-use-cnn-in-sentence-classification.tex
+2
-2
Chapter11/chapter11.tex
+0
-0
Chapter12/chapter12.tex
+1
-1
bibliography.bib
+125
-30
没有找到文件。
Chapter11/Figures/figure-fairseq-0.tex
查看文件 @
b9b1020b
...
...
@@ -34,7 +34,7 @@
\node
[anchor=north,word]
(tgt
_
1) at ([yshift=-0.4em]i
_
0.south)
{$
<
$
p
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
1.south)
{$
<
$
p
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{$
<
$
s
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{$
<
$
s
os
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{
go
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
4.south)
{
to
}
;
\node
[anchor=north,word]
(tgt
_
2) at ([yshift=-0.4em]i
_
5.south)
{
school
}
;
...
...
@@ -103,7 +103,7 @@
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
0.south)
{
go
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
1.south)
{
to
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{
school
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{$
<
$
/
s
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{$
<
$
eo
s
$
>
$}
;
\foreach
\point
in
{
0,1,2,3
}{
\node
[cir,font=\fontsize{6}{6}\selectfont,inner sep=0.8pt]
(c
_
\point
) at (8.2cm+
\point*
2em,7.5cm-1em*
\point
)
{
\bm
{$
\sum
$}}
;
...
...
@@ -140,7 +140,7 @@
\node
[anchor=south,word]
(src
_
1) at ([xshift=-2em,yshift=0.4em]r
_
0.north)
{$
<
$
p
$
>
$}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
0.north)
{
去
}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
1.north)
{
上学
}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
2.north)
{$
<
$
s
$
>
$}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
2.north)
{$
<
$
s
os
$
>
$}
;
\node
[anchor=south,word]
(src
_
2) at ([xshift=2em,yshift=0.4em]r
_
2.north)
{$
<
$
p
$
>
$}
;
...
...
Chapter11/Figures/figure-fairseq-2.tex
查看文件 @
b9b1020b
...
...
@@ -34,7 +34,7 @@
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
0.south)
{$
<
$
p
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
1.south)
{$
<
$
p
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{$
<
$
s
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{$
<
$
s
os
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{
go
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
4.south)
{
to
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
5.south)
{
school
}
;
...
...
@@ -98,7 +98,7 @@
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
0.south)
{
go
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
1.south)
{
to
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{
school
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{$
<
$
/
s
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{$
<
$
eo
s
$
>
$}
;
\foreach
\point
in
{
0,1,2,3
}{
\node
[cir,font=\fontsize{6}{6}\selectfont,inner sep=0.8pt]
(c
_
\point
) at (8.2cm+
\point*
2em,7.5cm-1em*
\point
)
{
\bm
{$
\sum
$}}
;
...
...
@@ -135,7 +135,7 @@
\node
[anchor=south,word]
(src
_
1) at ([xshift=-2em,yshift=0.4em]r
_
0.north)
{$
<
$
p
$
>
$}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
0.north)
{
去
}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
1.north)
{
上学
}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
2.north)
{$
<
$
s
$
>
$}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
2.north)
{$
<
$
s
os
$
>
$}
;
\node
[anchor=south,word]
(src
_
2) at ([xshift=2em,yshift=0.4em]r
_
2.north)
{$
<
$
p
$
>
$}
;
...
...
Chapter11/Figures/figure-fairseq-3.tex
查看文件 @
b9b1020b
...
...
@@ -34,7 +34,7 @@
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
0.south)
{$
<
$
p
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
1.south)
{$
<
$
p
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{$
<
$
s
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{$
<
$
s
os
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{
go
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
4.south)
{
to
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
5.south)
{
school
}
;
...
...
@@ -99,7 +99,7 @@
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
0.south)
{
go
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
1.south)
{
to
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
2.south)
{
school
}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{$
<
$
/
s
$
>
$}
;
\node
[anchor=north,word]
at ([yshift=-0.4em]i
_
3.south)
{$
<
$
eo
s
$
>
$}
;
\foreach
\point
in
{
0,1,2,3
}{
\node
[cir,font=\fontsize{6}{6}\selectfont,inner sep=0.8pt]
(c
_
\point
) at (8.2cm+
\point*
2em,7.5cm-1em*
\point
)
{
\bm
{$
\sum
$}}
;
...
...
@@ -136,7 +136,7 @@
\node
[anchor=south,word]
(src
_
1) at ([xshift=-2em,yshift=0.4em]r
_
0.north)
{$
<
$
p
$
>
$}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
0.north)
{
去
}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
1.north)
{
上学
}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
2.north)
{$
<
$
s
$
>
$}
;
\node
[anchor=south,word]
at ([yshift=0.4em]r
_
2.north)
{$
<
$
s
os
$
>
$}
;
\node
[anchor=south,word]
(src
_
2) at ([xshift=2em,yshift=0.4em]r
_
2.north)
{$
<
$
p
$
>
$}
;
...
...
Chapter11/Figures/figure-max-pooling.tex
查看文件 @
b9b1020b
...
...
@@ -22,8 +22,8 @@
\draw
[->,thick]
([xshift=0.4cm,yshift=-0.4cm]num8.east)--([xshift=1.5cm,yshift=-0.4cm]num8.east);
\node
(num17)[num,right of = num8,xshift= 2.5cm,fill=red!10]
{
6
}
;
\node
(num18)[num,right of = num17,xshift= 0.6cm,fill=green!10]
{
3
}
;
\node
(num19)[num,below of = num17,yshift=-0.6cm,fill=yellow!10]
{
8
}
;
\node
(num18)[num,right of = num17,xshift= 0.6cm,fill=green!10]
{
8
}
;
\node
(num19)[num,below of = num17,yshift=-0.6cm,fill=yellow!10]
{
3
}
;
\node
(num20)[num,below of = num18,yshift= -0.6cm,fill=blue!10]
{
4
}
;
\node
[right of = num20,xshift= 0.7cm]
{}
;
...
...
Chapter11/Figures/figure-single-glu.tex
查看文件 @
b9b1020b
...
...
@@ -63,9 +63,9 @@ $\otimes$: & 按位乘运算 \\
\draw
[-latex,thick]
(b.east) -- (c2.west);
\draw
[-latex,thick]
(c2.east) -- ([xshift=0.4cm]c2.east);
\node
[inner sep=0pt, font=\tiny]
at (0.75cm, -0.4cm)
{$
\mathbi
{
X
}$}
;
\node
[inner sep=0pt, font=\tiny]
at ([yshift=-0.8cm]a.south)
{$
\mathbi
{
B
}
=
\mathbi
{
X
}
*
\mathbi
{
V
}
+
\mathbi
{
b
}_{
\mathbi
{
W
}}$}
;
\node
[inner sep=0pt, font=\tiny]
at ([yshift=-0.8cm]b.south)
{$
\mathbi
{
A
}
=
\mathbi
{
X
}
*
\mathbi
{
W
}
+
\mathbi
{
b
}_{
\mathbi
{
V
}}$}
;
\node
[inner sep=0pt, font=\tiny]
at (8.2cm, -0.4cm)
{$
\mathbi
{
Y
}
=
\mathbi
{
A
}
\otimes
\sigma
(
\mathbi
{
B
}
)
$}
;
\node
[inner sep=0pt, font=\tiny]
at (0.75cm, -0.4cm)
{$
\mathbi
{
x
}$}
;
\node
[inner sep=0pt, font=\tiny]
at ([yshift=-0.8cm]a.south)
{$
\mathbi
{
B
}
=
\mathbi
{
x
}
*
\mathbi
{
V
}
+
\mathbi
{
b
}_{
\mathbi
{
W
}}$}
;
\node
[inner sep=0pt, font=\tiny]
at ([yshift=-0.8cm]b.south)
{$
\mathbi
{
A
}
=
\mathbi
{
x
}
*
\mathbi
{
W
}
+
\mathbi
{
b
}_{
\mathbi
{
V
}}$}
;
\node
[inner sep=0pt, font=\tiny]
at (8.2cm, -0.4cm)
{$
\mathbi
{
y
}
=
\mathbi
{
A
}
\otimes
\sigma
(
\mathbi
{
B
}
)
$}
;
\end{tikzpicture}
\ No newline at end of file
Chapter11/Figures/figure-standard.tex
查看文件 @
b9b1020b
...
...
@@ -40,7 +40,7 @@
\node
[vuale]
at ([xshift=0.9em]r3
_
1.east)
{$
\mathbi
{
z
}_
1
$}
;
\node
(t1) at (2.5em, -1em)
{
\large
{$
\cdots
$}}
;
\node
[anchor=north,font=
\tiny
] at ([yshift=-0.2em]t1.south)
{
(a)
传统
卷积
}
;
\node
[anchor=north,font=
\tiny
] at ([yshift=-0.2em]t1.south)
{
(a)
标准
卷积
}
;
\end{scope}
\begin{scope}
[xshift=4cm]
...
...
Chapter11/Figures/figure-use-cnn-in-sentence-classification.tex
查看文件 @
b9b1020b
...
...
@@ -85,10 +85,10 @@
%\draw [thick] (3.6cm, -0.3cm) -- (3.6cm, -0.5cm) -- node[font=\tiny, align=center,yshift=-0.5cm]{Convolutional layer with \\ multiple filter widths and \\ feature maps} (6cm,-0.5cm) -- (6cm, -0.3cm);
%\draw [thick] (7.2cm, -0.3cm) -- (7.2cm, -0.5cm) -- node[font=\tiny, align=center,yshift=-0.5cm]{Max-over-time\\ pooling} (9cm,-0.5cm) -- (9cm, -0.3cm);
%\draw [thick] (10cm, -0.3cm) -- (10cm, -0.5cm) -- node[font=\tiny, align=center,yshift=-0.5cm]{Fully connected layer \\ with dropout and \\ softmax output} (11.7cm,-0.5cm) -- (11.7cm, -0.3cm);
\draw
[thick] (0cm, -0.3cm) -- (0cm, -0.5cm) -- node[font=
\tiny
, align=center,yshift=-0.5cm]
{
维度大小为
$
m
\times
k
$
\\
的静态与非静态通道
\\
的句子表示
}
(2.4cm,-0.5cm) -- (2.4cm, -0.3cm);
\draw
[thick] (0cm, -0.3cm) -- (0cm, -0.5cm) -- node[font=
\tiny
, align=center,yshift=-0.5cm]
{
维度大小为
$
m
\times
K
$
\\
的静态与非静态通道
\\
的句子表示
}
(2.4cm,-0.5cm) -- (2.4cm, -0.3cm);
\draw
[thick] (3.6cm, -0.3cm) -- (3.6cm, -0.5cm) -- node[font=
\tiny
, align=center,yshift=-0.5cm]
{
具有多个不同大小
\\
的卷积核和特征图
\\
的卷积层
}
(6cm,-0.5cm) -- (6cm, -0.3cm);
\draw
[thick] (7.2cm, -0.3cm) -- (7.2cm, -0.5cm) -- node[font=
\tiny
, align=center,yshift=-0.5cm]
{
最大池化
}
(9cm,-0.5cm) -- (9cm, -0.3cm);
\draw
[thick] (10cm, -0.3cm) -- (10cm, -0.5cm) -- node[font=
\tiny
, align=center,yshift=-0.5cm]
{
带有
dropout
\\
和s
oftmax输出
\\
的全连接层
}
(11.7cm,-0.5cm) -- (11.7cm, -0.3cm);
\draw
[thick] (10cm, -0.3cm) -- (10cm, -0.5cm) -- node[font=
\tiny
, align=center,yshift=-0.5cm]
{
带有
Dropout
\\
和S
oftmax输出
\\
的全连接层
}
(11.7cm,-0.5cm) -- (11.7cm, -0.3cm);
%\node [font=\Large] at (5.2cm,-2cm){$h_i = dot(F,x_{i:i+l-1})+b$};
...
...
Chapter11/chapter11.tex
查看文件 @
b9b1020b
差异被折叠。
点击展开。
Chapter12/chapter12.tex
查看文件 @
b9b1020b
...
...
@@ -102,7 +102,7 @@
\parinterval
首先再来回顾一下
{
\chapterten
}
介绍的循环神经网络,虽然它很强大,但是也存在一些弊端。其中比较突出的问题是,循环神经网络每个循环单元都有向前依赖性,也就是当前时间步的处理依赖前一时间步处理的结果。这个性质可以使序列的“历史”信息不断被传递,但是也造成模型运行效率的下降。特别是对于自然语言处理任务,序列往往较长,无论是传统的RNN结构,还是更为复杂的LSTM结构,都需要很多次循环单元的处理才能够捕捉到单词之间的长距离依赖。由于需要多个循环单元的处理,距离较远的两个单词之间的信息传递变得很复杂。
\parinterval
针对这些问题,研究人员提出了一种全新的模型
$
\ \dash\
$
Transformer
\index
{
Transformer
}
\upcite
{
vaswani2017attention
}
。与循环神经网络等传统模型不同,Transformer模型仅仅使用自注意力机制和标准的前馈神经网络,完全不依赖任何循环单元或者卷积操作。自注意力机制的优点在于可以直接对序列中任意两个单元之间的关系进行建模,这使得长距离依赖等问题可以更好地被求解。此外,自注意力机制非常适合在GPU 上进行并行化,因此模型训练的速度更快。表
\ref
{
tab:12-11
}
对比了RNN、CNN和Transformer层类型的复杂度
\footnote
{
顺序操作数指
序列中的位置按顺序操作的次数,由于Transformer和CNN都可以并行计算,所以是1;路径长度指序列中的一个位置和另外任意一个位置
在网络中的距离。
}
。
\parinterval
针对这些问题,研究人员提出了一种全新的模型
$
\ \dash\
$
Transformer
\index
{
Transformer
}
\upcite
{
vaswani2017attention
}
。与循环神经网络等传统模型不同,Transformer模型仅仅使用自注意力机制和标准的前馈神经网络,完全不依赖任何循环单元或者卷积操作。自注意力机制的优点在于可以直接对序列中任意两个单元之间的关系进行建模,这使得长距离依赖等问题可以更好地被求解。此外,自注意力机制非常适合在GPU 上进行并行化,因此模型训练的速度更快。表
\ref
{
tab:12-11
}
对比了RNN、CNN和Transformer层类型的复杂度
\footnote
{
顺序操作数指
模型处理一个序列所需要的操作数,由于Transformer和CNN都可以并行计算,所以是1;路径长度指序列中任意两个单词
在网络中的距离。
}
。
%----------------------------------------------
\begin{table}
[htp]
...
...
bibliography.bib
查看文件 @
b9b1020b
...
...
@@ -4975,6 +4975,94 @@ author = {Yoshua Bengio and
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% chapter 11------------------------------------------------------
@article{DBLP:journals/pami/RenHG017,
author = {Shaoqing Ren and
Kaiming He and
Ross Girshick and
Jian Sun},
title = {Faster {R-CNN:} Towards Real-Time Object Detection with Region Proposal
Networks},
journal = {Institute of Electrical and Electronics Engineers},
volume = {39},
number = {6},
pages = {1137--1149},
year = {2017}
}
@inproceedings{DBLP:conf/eccv/LiuAESRFB16,
author = {Wei Liu and
Dragomir Anguelov and
Dumitru Erhan and
Christian Szegedy and
Scott Reed and
Cheng-Yang Fu and
Alexander C. Berg},
title = {{SSD:} Single Shot MultiBox Detector},
publisher = {European Conference on Computer Vision},
volume = {9905},
pages = {21--37},
publisher = {Springer},
year = {2016}
}
@inproceedings{devlin-etal-2014-fast,
author = {Jacob Devlin and
Rabih Zbib and
Zhongqiang Huang and
Thomas Lamar and
Richard M. Schwartz and
John Makhoul},
title = {Fast and Robust Neural Network Joint Models for Statistical Machine
Translation},
pages = {1370--1380},
publisher = {Annual Meeting of the Association for Computational Linguistics},
year = {2014}
}
@inproceedings{DBLP:conf/acl/WangLLJL15,
author = {Mingxuan Wang and
Zhengdong Lu and
Hang Li and
Wenbin Jiang and
Qun Liu},
title = {genCNN: {A} Convolutional Architecture for Word Sequence Prediction},
pages = {1567--1576},
publisher = {The Association for Computer Linguistics},
year = {2015}
}
@inproceedings{DBLP:conf/icassp/ZhangCJ17,
author = {Yu Zhang and
William Chan and
Navdeep Jaitly},
title = {Very deep convolutional networks for end-to-end speech recognition},
pages = {4845--4849},
publisher = {Institute of Electrical and Electronics Engineers},
year = {2017}
}
@inproceedings{DBLP:conf/icassp/DengAY13,
author = {Li Deng and
Ossama Abdel-Hamid and
Dong Yu},
title = {A deep convolutional neural network using heterogeneous pooling for
trading acoustic invariance with phonetic confusion},
pages = {6669--6673},
publisher = {Institute of Electrical and Electronics Engineers},
year = {2013}
}
@inproceedings{DBLP:journals/corr/LuongPM15,
author = {Thang Luong and
Hieu Pham and
Christopher D. Manning},
title = {Effective Approaches to Attention-based Neural Machine Translation},
publisher = {Conference on Empirical Methods in Natural
Language Processing},
pages = {1412--1421},
year = {2015}
}
@inproceedings{DBLP:conf/acl-codeswitch/WangCK18,
author = {Changhan Wang and
Kyunghyun Cho and
...
...
@@ -5112,11 +5200,12 @@ author = {Yoshua Bengio and
}
@article{Sennrich2016ImprovingNM,
title={Improving Neural Machine Translation Models with Monolingual Data},
author={Rico Sennrich and B. Haddow and Alexandra Birch},
journal={ArXiv},
year={2016},
volume={abs/1511.06709}
author = {Rico Sennrich and
Barry Haddow and
Alexandra Birch},
title = {Improving Neural Machine Translation Models with Monolingual Data},
publisher = {The Association for Computer Linguistics},
year = {2016}
}
@inproceedings{bahdanau2014neural,
...
...
@@ -5130,7 +5219,7 @@ author = {Yoshua Bengio and
@article{Waibel1989PhonemeRU,
title={Phoneme recognition using time-delay neural networks},
author={Alexander
H. Waibel and Toshiyuki Hanazawa and Geoffrey E. Hinton and K. Shikano and K
. Lang},
author={Alexander
Waibel and Toshiyuki Hanazawa and Geoffrey Hinton and Kiyohiro Shikano and K.J
. Lang},
journal={IEEE Transactions on Acoustics, Speech, and Signal Processing},
year={1989},
volume={37},
...
...
@@ -5139,7 +5228,7 @@ author = {Yoshua Bengio and
@article{LeCun1989BackpropagationAT,
title={Backpropagation Applied to Handwritten Zip Code Recognition},
author={Y
. LeCun and B. Boser and J. Denker and D. Henderson and R. Howard and W. Hubbard and L.
Jackel},
author={Y
ann LeCun and Bernhard Boser and John Denker and Don Henderson and R. Howard and W.E. Hubbard and Larry
Jackel},
journal={Neural Computation},
year={1989},
volume={1},
...
...
@@ -5147,7 +5236,7 @@ author = {Yoshua Bengio and
}
@article{726791,
author={Y
. {Lecun} and L. {Bottou} and Y. {Bengio} and P.
{Haffner}},
author={Y
ann {Lecun} and Leon {Bottou} and Y. {Bengio} and Patrick
{Haffner}},
journal={Proceedings of the IEEE},
title={Gradient-based learning applied to document recognition},
year={1998},
...
...
@@ -5180,7 +5269,7 @@ author = {Yoshua Bengio and
@article{Girshick2015FastR,
title={Fast R-CNN},
author={Ross
B.
Girshick},
author={Ross Girshick},
journal={International Conference on Computer Vision},
year={2015},
pages={1440-1448}
...
...
@@ -5197,7 +5286,7 @@ author = {Yoshua Bengio and
@inproceedings{Kalchbrenner2014ACN,
title={A Convolutional Neural Network for Modelling Sentences},
author={Nal Kalchbrenner and Edward Grefenstette and P
.
Blunsom},
author={Nal Kalchbrenner and Edward Grefenstette and P
hil
Blunsom},
publisher={Annual Meeting of the Association for Computational Linguistics},
pages={655--665},
year={2014}
...
...
@@ -5414,26 +5503,11 @@ author = {Yoshua Bengio and
year={2017},
}
@article{Minaee2020DeepLB,
title={Deep Learning Based Text Classification: A Comprehensive Review},
author = {Shervin Minaee and
Nal Kalchbrenner and
Erik Cambria and
Narjes Nikzad and
Meysam Chenaghlu and
Jianfeng Gao},
journal={CoRR},
year={2020},
volume={abs/2004.03705}
}
@article{Sifre2013RotationSA,
title={Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination},
author = {Laurent Sifre and
St{\'{e}}phane Mallat},
journal={IEEE Conference on Computer Vision and Pattern Recognition},
year={2013},
pages={1233-1240}
@article{sifre2014rigid,
title={Rigid-motion scattering for image classification},
author={Sifre, Laurent and Mallat, St{\'e}phane},
year={2014},
publisher={Citeseer}
}
@article{Taigman2014DeepFaceCT,
...
...
@@ -5475,6 +5549,27 @@ author = {Yoshua Bengio and
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% chapter 12------------------------------------------------------
@inproceedings{DBLP:conf/coling/ZengLLZZ14,
author = {Daojian Zeng and
Kang Liu and
Siwei Lai and
Guangyou Zhou and
Jun Zhao},
title = {Relation Classification via Convolutional Deep Neural Network},
pages = {2335--2344},
publisher = {International Conference on Computational Linguistics},
year = {2014}
}
@inproceedings{DBLP:conf/acl/JohnsonZ17,
author = {Rie Johnson and
Tong Zhang},
title = {Deep Pyramid Convolutional Neural Networks for Text Categorization},
pages = {562--570},
publisher = {Association for Computational Linguistics},
year = {2017}
}
@inproceedings{DBLP:conf/interspeech/GulatiQCPZYHWZW20,
author = {Anmol Gulati and
James Qin and
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论