pys2t_transformer.py 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#!/usr/bin/env python3

import logging
import math
import torch
from functools import reduce

import torch.nn as nn
from fairseq import checkpoint_utils
from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.models import (
    FairseqEncoder,
    register_model,
    register_model_architecture,
)
from fairseq.models.speech_to_text import S2TTransformerModel

from fairseq.modules import (
    FairseqDropout,
    LayerNorm,
    PositionalEmbedding,
    PyramidTransformerEncoderLayer,
23
    MultiheadAttention,
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
)

logger = logging.getLogger(__name__)


def lengths_to_padding_mask_with_maxlen(lens, max_length):
    bsz = lens.size(0)
    mask = torch.arange(max_length).to(lens.device).view(1, max_length)
    mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_length)
    return mask


class ReducedEmbed(nn.Module):
    # Reduced embedding for Pyramid Transformer
    def __init__(
        self,
        reduced_way: str,
        embed_norm: bool,
        in_channels: int,
        out_channels: int,
        kernel_sizes: int,
        stride: int,
        padding: int,
    ):
        super().__init__()

        self.stride = stride
        self.reduced_way = reduced_way
        if self.reduced_way == "conv":
            self.conv = nn.Conv1d(in_channels, out_channels, kernel_sizes, stride=stride, padding=padding)
        elif self.reduced_way == "glu":
            self.conv = nn.Conv1d(in_channels, out_channels * 2, kernel_sizes, stride=stride, padding=padding)
            self.glu = nn.GLU(dim=1)
57 58
        elif self.reduced_way == "proj":
            self.proj = nn.Linear(2 * in_channels, out_channels, bias=False)
59 60 61 62 63
        else:
            logger.error("Unsupported reduced way!")

        self.embed_norm = embed_norm
        if self.embed_norm:
64 65 66 67
            if self.reduced_way == "proj":
                self.norm = LayerNorm(2 * in_channels)
            else:
                self.norm = LayerNorm(out_channels)
68

69 70 71 72 73 74 75 76 77 78 79 80
    def forward(self, x, lengths):
        seq_len, bsz, dim = x.size()
        assert seq_len % self.stride == 0, "The sequence length %d must be a multiple of %d." % (seq_len, self.stride)

        padding_mask = lengths_to_padding_mask_with_maxlen(lengths, seq_len)    # bsz, seq_len
        mask_pad = padding_mask.unsqueeze(2)
        # mask batch padding
        if mask_pad is not None:
            x = x.transpose(0, 1)
            x.masked_fill_(mask_pad, 0.0)
            x = x.transpose(0, 1)

81 82 83 84 85 86 87 88 89 90
        if self.reduced_way == "proj":
            x = x.transpose(0, 1).contiguous().view(bsz, int(seq_len / 2), -1)
            x = self.proj(self.norm(x))
            x = x.transpose(0, 1)
        else:
            x = x.permute(1, 2, 0)  # B * D * T
            x = self.conv(x)
            if self.reduced_way == "glu":
                x = self.glu(x)
            x = x.permute(2, 0, 1)  # T * B * D
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        if self.embed_norm:
            x = self.norm(x)

        lengths = lengths / self.stride

        padding_mask = lengths_to_padding_mask_with_maxlen(lengths, x.size(0))
        mask_pad = padding_mask.unsqueeze(2)
        # mask batch padding
        if mask_pad is not None:
            x = x.transpose(0, 1)
            x.masked_fill_(mask_pad, 0.0)
            x = x.transpose(0, 1)

        return x, lengths, padding_mask


107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
class BlockFuse(nn.Module):

    def __init__(self, embed_dim, prev_embed_dim, dropout, num_head, fuse_way="add"):
        super().__init__()

        self.attn = MultiheadAttention(
            embed_dim,
            num_head,
            kdim=prev_embed_dim,
            vdim=prev_embed_dim,
            dropout=dropout,
            encoder_decoder_attention=True,
        )
        self.q_layer_norm = LayerNorm(embed_dim)
        self.kv_layer_norm = LayerNorm(prev_embed_dim)
        self.fuse_way = fuse_way
        if self.fuse_way == "gated":
            self.gate_linear = nn.Linear(2 * embed_dim, embed_dim)

    def forward(self, x, state, padding):
        residual = x
        x = self.q_layer_norm(x)
        state = self.kv_layer_norm(state)
        x, attn = self.attn(
            query=x,
            key=state,
            value=state,
            key_padding_mask=padding,
            static_kv=True,
        )

        if self.fuse_way == "add":
            x = residual + x
        elif self.fuse_way == "gated":
            coef = (self.gate_linear(torch.cat([x, residual], dim=-1))).sigmoid()
            x = coef * x + (1 - coef) * residual

        return x


147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
@register_model("pys2t_transformer")
class PYS2TTransformerModel(S2TTransformerModel):
    """Adapted Transformer model (https://arxiv.org/abs/1706.03762) for
    speech-to-text tasks. The Transformer encoder/decoder remains the same.
    A trainable input subsampler is prepended to the Transformer encoder to
    project inputs into the encoder dimension as well as downsample input
    sequence for computational efficiency."""

    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        S2TTransformerModel.add_args(parser)
        parser.add_argument(
            "--pyramid-stages",
            type=int,
            help="the number of the stage",
        )
        parser.add_argument(
            "--pyramid-layers",
            type=str,
            help="the number of the encoder layers",
        )
        parser.add_argument(
            "--pyramid-sr-ratios",
            type=str,
            help="the ratio of the subsampling",
        )
        parser.add_argument(
            "--pyramid-attn-sample-ratio",
            type=str,
            help="the ratio of the subsampling in the self attention module",
        )
        parser.add_argument(
            "--pyramid-reduced-embed",
            type=str,
185
            choices=["glu", "conv", "proj"],
186 187 188 189 190 191 192 193
            help="the reduced way of the embedding",
        )
        parser.add_argument(
            "--pyramid-embed-norm",
            action="store_true",
            help="use layer norm in reduced embedding",
        )
        parser.add_argument(
194 195 196 197 198 199 200 201 202 203
            "--pyramid-block-attn",
            action="store_true",
            help="use block attention",
        )
        parser.add_argument(
            "--pyramid-fuse-way",
            type=str,
            help="fused way for block attention",
        )
        parser.add_argument(
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
            "--pyramid-position-embed",
            type=str,
            help="use the position embedding or not",
        )
        parser.add_argument(
            "--pyramid-embed-dims",
            type=str,
            help="the embedding dimension",
        )
        parser.add_argument(
            "--pyramid-kernel-sizes",
            type=str,
            help="the kernel size of the reduced embedding",
        )
        parser.add_argument(
            "--pyramid-ffn-ratios",
            type=str,
            help="the ratio of the ffn",
        )
        parser.add_argument(
            "--pyramid-heads",
            type=str,
            help="the number of the attention heads",
        )
228 229 230 231 232
        parser.add_argument(
            "--pyramid-use-ppm",
            action="store_true",
            help="use ppm",
        )
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

        parser.add_argument(
            "--ctc-layer",
            type=int,
            help="the position of the ctc loss",
        )
        pass

    @classmethod
    def build_encoder(cls, args, task=None, embed_tokens=None):
        encoder = PyS2TTransformerEncoder(args, task, embed_tokens)
        if getattr(args, "load_pretrained_encoder_from", None):
            encoder = checkpoint_utils.load_pretrained_component_from_model(
                component=encoder, checkpoint=args.load_pretrained_encoder_from, strict=False
            )
            logger.info(
                f"loaded pretrained encoder from: "
                f"{args.load_pretrained_encoder_from}"
            )
        return encoder


class PyS2TTransformerEncoder(FairseqEncoder):
    """Speech-to-text Pyramid Transformer encoder"""

    def __init__(self, args, task=None, embed_tokens=None):
        super().__init__(None)

        self.padding_idx = 1
        self.attn_type = getattr(args, "encoder_attention_type", "selfattn")
263
        self.embed_dim = args.encoder_embed_dim
264

265 266 267
        self.dropout = FairseqDropout(
                p=args.dropout, module_name=self.__class__.__name__
        )
268 269 270 271 272 273 274 275 276 277 278 279 280
        self.pyramid_stages = getattr(args, "pyramid_stages", 4)

        self.pyramid_layers = [int(n) for n in args.pyramid_layers.split("_")]
        self.pyramid_sr_ratios = [int(n) for n in args.pyramid_sr_ratios.split("_")]
        self.pyramid_attn_sample_ratios = [int(n) for n in args.pyramid_attn_sample_ratios.split("_")]
        self.pyramid_embed_dims = [int(n) for n in args.pyramid_embed_dims.split("_")]
        self.pyramid_position_embed = [int(n) for n in args.pyramid_position_embed.split("_")]
        self.pyramid_kernel_sizes = [int(n) for n in args.pyramid_kernel_sizes.split("_")]
        self.pyramid_ffn_ratios = [int(n) for n in args.pyramid_ffn_ratios.split("_")]
        self.pyramid_heads = [int(n) for n in args.pyramid_heads.split("_")]
        self.pyramid_reduced_embed = args.pyramid_reduced_embed
        self.pyramid_embed_norm = args.pyramid_embed_norm

281 282 283 284
        self.pyramid_block_attn = getattr(args, "pyramid_block_attn", False)
        self.pyramid_fuse_way = getattr(args, "pyramid_fuse_way", "add")
        self.use_ppm = getattr(args, "pyramid_use_ppm", False)

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        for i in range(self.pyramid_stages):
            num_layers = self.pyramid_layers[i]
            sr_ratio = self.pyramid_sr_ratios[i]
            attn_sample_ratio = self.pyramid_attn_sample_ratios[i]
            embed_dim = self.pyramid_embed_dims[i]
            kernel_size = self.pyramid_kernel_sizes[i]
            ffn_ratio = self.pyramid_ffn_ratios[i]
            num_head = self.pyramid_heads[i]
            use_pos_embed = self.pyramid_position_embed[i]

            if i == 0:
                self.embed_scale = math.sqrt(embed_dim)
                if args.no_scale_embedding:
                    self.embed_scale = 1.0

            reduced_embed = ReducedEmbed(
                self.pyramid_reduced_embed,
302 303
                self.pyramid_embed_norm,
                # self.pyramid_embed_norm if i != 0 else False,
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
                args.input_feat_per_channel * args.input_channels if i == 0 else self.pyramid_embed_dims[i-1],
                embed_dim,
                kernel_sizes=kernel_size,
                stride=sr_ratio,
                padding=kernel_size // 2,
            )
            if use_pos_embed:
                pos_embed = PositionalEmbedding(
                    args.max_source_positions, embed_dim,
                    self.padding_idx, pos_emb_type=self.attn_type
                )
            else:
                pos_embed = None

            block = nn.ModuleList([
                PyramidTransformerEncoderLayer(args, embed_dim, embed_dim * ffn_ratio, num_head, attn_sample_ratio)
                for _ in range(num_layers)])

322 323 324 325 326 327 328 329 330 331 332 333
            block_attn = None
            if self.pyramid_block_attn:
                if i != 0:
                    block_attn = BlockFuse(embed_dim, self.pyramid_embed_dims[i-1],
                                           args.dropout, num_head, self.pyramid_fuse_way)

            if self.use_ppm:
                ppm_layer_norm = LayerNorm(embed_dim)
                ppm = nn.Sequential(
                    nn.Conv1d(embed_dim, self.embed_dim, kernel_size=1, bias=False),
                    nn.BatchNorm1d(self.embed_dim),
                    nn.ReLU(),
334 335
                )
            else:
336 337
                ppm_layer_norm = None
                ppm = None
338

339 340 341
            setattr(self, f"reduced_embed{i + 1}", reduced_embed)
            setattr(self, f"pos_embed{i + 1}", pos_embed)
            setattr(self, f"block{i + 1}", block)
342 343 344
            setattr(self, f"block_attn{i + 1}", block_attn)
            setattr(self, f"ppm{i + 1}", ppm)
            setattr(self, f"ppm_layer_norm{i + 1}", ppm_layer_norm)
345 346 347 348 349 350 351

            if i == self.pyramid_stages - 1:
                if args.encoder_normalize_before:
                    self.layer_norm = LayerNorm(embed_dim)
                else:
                    self.layer_norm = None

352 353 354 355
        if self.use_ppm:
            self.ppm_weight = nn.Parameter(torch.Tensor(self.pyramid_stages).fill_(1.0))
            self.ppm_weight.data = self.ppm_weight.data / self.ppm_weight.data.sum(0, keepdim=True)

356 357 358 359 360
        self.use_ctc = "sate" in args.arch or \
                       (("ctc" in getattr(args, "criterion", False)) and
                        (getattr(args, "ctc_weight", False) > 0))
        if self.use_ctc:
            self.ctc_layer = (args.encoder_layers + args.ctc_layer) % args.encoder_layers
361
            self.inter_ctc = True if self.ctc_layer != args.encoder_layers else False
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

            if task.source_dictionary == task.target_dictionary and getattr(args, "share_all_embeddings", False):
                self.ctc_projection = nn.Linear(
                    embed_tokens.weight.shape[1],
                    embed_tokens.weight.shape[0],
                    bias=False,
                )
                self.ctc_projection.weight = embed_tokens.weight
            else:
                embed_dim = self.pyramid_embed_dims[-1]

                if self.inter_ctc:
                    ctc_layer = self.ctc_layer
                    for i in range(self.pyramid_stages):
                        ctc_layer -= self.pyramid_layers[i]
                        if ctc_layer <= 0:
                            embed_dim = self.pyramid_embed_dims[i]
379
                            break
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
                    self.ctc_layer_norm = LayerNorm(embed_dim)

                self.ctc_projection = nn.Linear(embed_dim, len(task.source_dictionary), bias=False)
                nn.init.normal_(
                    self.ctc_projection.weight, mean=0, std=embed_dim ** -0.5
                )
            self.ctc_dropout_module = FairseqDropout(
                p=args.dropout, module_name=self.__class__.__name__
            )
            self.softmax = nn.Softmax(dim=-1)

    def forward(self, src_tokens, src_lengths):

        batch = src_tokens.size(0)
        x = src_tokens.transpose(0, 1)
        input_lengths = src_lengths

        # padding to the multiply of 2
        max_len = x.size(0)
        length = reduce(lambda a, b: a*b, self.pyramid_sr_ratios)
        padding_to_len = (length - max_len % length)
        if padding_to_len > 0:
            padding_for_pyramid = x.new_zeros((padding_to_len, batch, x.size(2)))
            x = torch.cat([x, padding_for_pyramid], dim=0)

        layer_idx = 0
        ctc_logit = None
407 408
        prev_state = []
        prev_padding = []
409 410 411 412
        for i in range(self.pyramid_stages):
            reduced_embed = getattr(self, f"reduced_embed{i + 1}")
            pos_embed = getattr(self, f"pos_embed{i + 1}")
            block = getattr(self, f"block{i + 1}")
413
            block_attn = getattr(self, f"block_attn{i + 1}")
414

415 416
            # if i == 0:
            #    x = self.embed_scale * x
417 418 419 420 421 422 423

            x, input_lengths, encoder_padding_mask = reduced_embed(x, input_lengths)
            # add the position encoding and dropout
            if pos_embed:
                positions = pos_embed(encoder_padding_mask).transpose(0, 1)
                if self.attn_type != "rel_selfattn":
                    x += positions
424
                positions = self.dropout(positions)
425 426 427
            else:
                positions = None

428 429 430
            if i == 0:
                x = self.dropout(x)

431 432 433 434
            for layer in block:
                x = layer(x, encoder_padding_mask, pos_emb=positions)
                layer_idx += 1

435 436 437
                if self.use_ctc and self.inter_ctc and self.ctc_layer == layer_idx:
                    ctc_logit = self.ctc_layer_norm(x)

438 439 440
            prev_state.append(x)
            prev_padding.append(encoder_padding_mask)

441
            if block_attn is not None:
442
                x = block_attn(x, prev_state[-1], prev_padding[-1])
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        if self.use_ppm:
            pool_state = [x]
            seq_len, bsz, dim = x.size()
            i = -1
            for state in prev_state[:-1]:
                i += 1
                ppm = getattr(self, f"ppm{i + 1}")
                ppm_layer_norm = getattr(self, f"ppm_layer_norm{i + 1}")

                state = ppm_layer_norm(state)
                state = state.permute(1, 2, 0)
                state = nn.functional.adaptive_avg_pool1d(state, seq_len)
                state = ppm(state)
                state = state.permute(2, 0, 1)
                pool_state.append(state)
            x = (torch.stack(pool_state, dim=0) * self.ppm_weight.view(-1, 1, 1, 1)).sum(0)

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
        if self.layer_norm is not None:
            x = self.layer_norm(x)

        return {
            "encoder_out": [x],  # T x B x C
            "encoder_padding_mask": [encoder_padding_mask],  # B x T
            "encoder_embedding": [],  # B x T x C
            "encoder_states": [],  # List[T x B x C]
            "ctc_logit": [ctc_logit if ctc_logit is not None else x],
            "src_tokens": [],
            "src_lengths": [],
        }

    def compute_ctc_logit(self, encoder_out):
        assert self.use_ctc, "CTC is not available!"

477 478
        if isinstance(encoder_out, dict) and "ctc_logit" in encoder_out:
            encoder_state = encoder_out["ctc_logit"][0]
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
        else:
            encoder_state = encoder_out
        ctc_logit = self.ctc_projection(self.ctc_dropout_module(encoder_state))

        return ctc_logit

    def compute_ctc_prob(self, encoder_out, temperature=1.0):
        assert self.use_ctc, "CTC is not available!"

        ctc_logit = self.compute_ctc_logit(encoder_out) / temperature

        return self.softmax(ctc_logit)

    def reorder_encoder_out(self, encoder_out, new_order):
        new_encoder_out = (
            [] if len(encoder_out["encoder_out"]) == 0
            else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
        )

        new_encoder_padding_mask = (
            [] if len(encoder_out["encoder_padding_mask"]) == 0
            else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
        )

        new_encoder_embedding = (
            [] if len(encoder_out["encoder_embedding"]) == 0
            else [x.index_select(0, new_order) for x in encoder_out["encoder_embedding"]]
        )

        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,  # T x B x C
            "encoder_padding_mask": new_encoder_padding_mask,  # B x T
            "encoder_embedding": new_encoder_embedding,  # B x T x C
            "encoder_states": encoder_states,  # List[T x B x C]
            "src_tokens": [],  # B x T
            "src_lengths": [],  # B x 1
        }


@register_model_architecture(model_name="pys2t_transformer", arch_name="pys2t_transformer")
def base_architecture(args):
    # Convolutional subsampler
    args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "")
    args.conv_channels = getattr(args, "conv_channels", 1024)

    # Pyramid
    args.pyramid_stages = getattr(args, "pyramid_stages", None)
    args.pyramid_layers = getattr(args, "pyramid_layers", None)
    args.pyramid_sr_ratios = getattr(args, "pyramid_sr_ratios", None)
    args.pyramid_attn_sample_ratios = getattr(args, "pyramid_attn_sample_ratios", None)
    args.pyramid_embed_dims = getattr(args, "pyramid_embed_dims", None)
    args.pyramid_kernel_sizes = getattr(args, "pyramid_kernel_sizes", None)
    args.pyramid_ffn_ratios = getattr(args, "pyramid_ffn_ratios", None)
    args.pyramid_heads = getattr(args, "pyramid_heads", None)
    args.pyramid_position_embed = getattr(args, "pyramid_position_embed", None)
    args.pyramid_reduced_embed = getattr(args, "pyramid_reduced_embed", "conv")
    args.pyramid_embed_norm = getattr(args, "pyramid_embed_norm", False)

    args.ctc_layer = getattr(args, "ctc_layer", -1)

    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 12)
    args.encoder_attention_type = getattr(args, "encoder_attention_type", "selfattn")
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_type = getattr(args, "decoder_attention_type", "selfattn")
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", args.dropout)
    args.activation_dropout = getattr(args, "activation_dropout", args.dropout)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)
    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)

    args.max_encoder_relative_length = getattr(args, 'max_encoder_relative_length', -1)
    args.max_decoder_relative_length = getattr(args, 'max_decoder_relative_length', -1)
    args.k_only = getattr(args, 'k_only', True)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_s")
def pys2t_transformer_s(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 8)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
    args.dropout = getattr(args, "dropout", 0.1)

    args.pyramid_stages = getattr(args, "pyramid_stages", 4)
    args.pyramid_layers = getattr(args, "pyramid_layers", "3_3_3_3")
    args.pyramid_embed_dims = getattr(args, "pyramid_embed_dims", "64_128_256_512")
    args.pyramid_kernel_sizes = getattr(args, "pyramid_kernel_sizes", "2_2_2_2")
    args.pyramid_ffn_ratios = getattr(args, "pyramid_ffn_ratios", "4_4_4_4")
    args.pyramid_attn_sample_ratios = getattr(args, "pyramid_attn_sample_ratios", "8_4_2_1")
    args.pyramid_sr_ratios = getattr(args, "pyramid_sr_ratios", "2_2_2_2")
    args.pyramid_heads = getattr(args, "pyramid_heads", "1_2_4_8")
    args.pyramid_position_embed = getattr(args, "pyramid_position_embed", "1_1_1_1")
    args.pyramid_reduced_embed = getattr(args, "pyramid_reduced_embed", "conv")
    args.pyramid_embed_norm = getattr(args, "pyramid_embed_norm", False)

    base_architecture(args)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_s_relative")
def pys2t_transformer_s_relative(args):
    args.max_encoder_relative_length = 100
    args.max_decoder_relative_length = 20
    args.k_only = True
    pys2t_transformer_s(args)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_xs")
def pys2t_transformer_xs(args):
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.decoder_layers = getattr(args, "decoder_layers", 3)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 4)
    args.dropout = getattr(args, "dropout", 0.3)
    pys2t_transformer_s(args)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_sp")
def pys2t_transformer_sp(args):
    args.encoder_layers = getattr(args, "encoder_layers", 16)
    pys2t_transformer_s(args)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_m")
def pys2t_transformer_m(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 512 * 4)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.dropout = getattr(args, "dropout", 0.15)
    base_architecture(args)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_mp")
def pys2t_transformer_mp(args):
    args.encoder_layers = getattr(args, "encoder_layers", 16)
    pys2t_transformer_m(args)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_l")
def pys2t_transformer_l(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024 * 4)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    args.dropout = getattr(args, "dropout", 0.2)
    base_architecture(args)


@register_model_architecture("pys2t_transformer", "pys2t_transformer_lp")
def pys2t_transformer_lp(args):
    args.encoder_layers = getattr(args, "encoder_layers", 16)
    pys2t_transformer_l(args)