Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
Emmay
NiuTrans.Tensor
Commits
4e8872e9
Commit
4e8872e9
authored
Aug 03, 2018
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bug fixes in matrix multiplication
parent
f21e1b48
隐藏空白字符变更
内嵌
并排
正在显示
5 个修改的文件
包含
76 行增加
和
15 行删除
+76
-15
source/network/XBackwardMath.cpp
+44
-4
source/network/XBackwardMath.h
+7
-2
source/sample/transformer/T2TUtility.cpp
+2
-3
source/sample/transformer/T2TUtility.h
+2
-3
source/tensor/core/arithmetic/MatrixMul.cpp
+21
-3
没有找到文件。
source/network/XBackwardMath.cpp
查看文件 @
4e8872e9
...
@@ -259,16 +259,58 @@ void XMathGrad::GradMatrixMul(XTensor * node)
...
@@ -259,16 +259,58 @@ void XMathGrad::GradMatrixMul(XTensor * node)
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
a
);
XNoder
::
MakeGrad
(
b
);
XNoder
::
MakeGrad
(
b
);
XTensor
*
c
=
node
;
XTensor
*
dedc
=
node
->
grad
;
XTensor
*
dedc
=
node
->
grad
;
XTensor
*
deda
=
a
->
grad
;
XTensor
*
deda
=
a
->
grad
;
XTensor
*
dedb
=
b
->
grad
;
XTensor
*
dedb
=
b
->
grad
;
if
(
deda
->
order
==
2
&&
dedb
->
order
==
2
)
GradMatrixMul
(
a
,
deda
,
transA
,
b
,
dedb
,
transB
,
dedc
,
alpha
);
else
if
(
transA
==
X_NOTRANS
&&
deda
->
order
>
2
&&
dedb
->
order
==
2
){
int
orderBackupA
=
a
->
order
;
int
orderBackupC
=
c
->
order
;
int
dimsBackupA
[
MAX_TENSOR_DIM_NUM
];
int
dimsBackupC
[
MAX_TENSOR_DIM_NUM
];
memcpy
(
dimsBackupA
,
a
->
dimSize
,
sizeof
(
int
)
*
a
->
order
);
memcpy
(
dimsBackupC
,
c
->
dimSize
,
sizeof
(
int
)
*
c
->
order
);
int
dimsA
[
2
]
=
{
a
->
unitNum
/
a
->
GetDim
(
-
1
),
a
->
GetDim
(
-
1
)};
int
dimsC
[
2
]
=
{
c
->
unitNum
/
c
->
GetDim
(
-
1
),
c
->
GetDim
(
-
1
)};
a
->
Reshape
(
2
,
dimsA
);
c
->
Reshape
(
2
,
dimsC
);
deda
->
Reshape
(
2
,
dimsA
);
dedc
->
Reshape
(
2
,
dimsC
);
GradMatrixMul
(
a
,
deda
,
transA
,
b
,
dedb
,
transB
,
dedc
,
alpha
);
a
->
Reshape
(
orderBackupA
,
dimsBackupA
);
c
->
Reshape
(
orderBackupC
,
dimsBackupC
);
deda
->
Reshape
(
orderBackupA
,
dimsBackupA
);
dedc
->
Reshape
(
orderBackupC
,
dimsBackupC
);
}
else
{
ShowNTErrors
(
"TODO!"
);
}
node
->
visitMark
=
NODE_FINISHED
;
}
/*
gradient for matrix multiply: c = matmul(a, b) * \alpha
>> a - as it is
>> deda - dE/da
>> b - as it is
>> dedb - dE/db
>> dedc - dE/dc
>> alpha - the scalar
*/
void
XMathGrad
::
GradMatrixMul
(
XTensor
*
a
,
XTensor
*
deda
,
MATRIX_TRANS_TYPE
transA
,
XTensor
*
b
,
XTensor
*
dedb
,
MATRIX_TRANS_TYPE
transB
,
XTensor
*
dedc
,
DTYPE
alpha
)
{
/* c = a * b * \alpha */
/* c = a * b * \alpha */
if
(
transA
==
X_NOTRANS
&&
transB
==
X_NOTRANS
){
if
(
transA
==
X_NOTRANS
&&
transB
==
X_NOTRANS
){
/* dE/da = dE/dc * b^T * \alpha */
/* dE/da = dE/dc * b^T * \alpha */
_MatrixMul
(
dedc
,
X_NOTRANS
,
b
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
_MatrixMul
(
dedc
,
X_NOTRANS
,
b
,
X_TRANS
,
deda
,
alpha
,
1.0
F
);
/* dE/db = a^T * dE/dc * \alpha */
/* dE/db = a^T * dE/dc * \alpha */
_MatrixMul
(
a
,
X_TRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
_MatrixMul
(
a
,
X_TRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
}
...
@@ -302,8 +344,6 @@ void XMathGrad::GradMatrixMul(XTensor * node)
...
@@ -302,8 +344,6 @@ void XMathGrad::GradMatrixMul(XTensor * node)
/* dE/db = a * dE/dc * \alpha */
/* dE/db = a * dE/dc * \alpha */
_MatrixMul
(
a
,
X_NOTRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
_MatrixMul
(
a
,
X_NOTRANS
,
dedc
,
X_NOTRANS
,
dedb
,
alpha
,
1.0
F
);
}
}
node
->
visitMark
=
NODE_FINISHED
;
}
}
/*
/*
...
...
source/network/XBackwardMath.h
查看文件 @
4e8872e9
...
@@ -56,6 +56,12 @@ private:
...
@@ -56,6 +56,12 @@ private:
/* gradient for matrix multiply: c = matmul(a, b) */
/* gradient for matrix multiply: c = matmul(a, b) */
static
static
void
GradMatrixMul
(
XTensor
*
node
);
void
GradMatrixMul
(
XTensor
*
node
);
/* gradient for matrix multiply: c = matmul(a, b) */
static
void
GradMatrixMul
(
XTensor
*
a
,
XTensor
*
deda
,
MATRIX_TRANS_TYPE
transA
,
XTensor
*
b
,
XTensor
*
dedb
,
MATRIX_TRANS_TYPE
transB
,
XTensor
*
dedc
,
DTYPE
alpha
);
/* gradient for log: c = log(a) */
/* gradient for log: c = log(a) */
static
static
...
@@ -128,4 +134,4 @@ private:
...
@@ -128,4 +134,4 @@ private:
}
}
#endif
#endif
\ No newline at end of file
source/sample/transformer/T2TUtility.cpp
查看文件 @
4e8872e9
...
@@ -26,7 +26,7 @@
...
@@ -26,7 +26,7 @@
namespace
transformer
namespace
transformer
{
{
void
LoadParamString
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
char
*
p
,
char
*
defaultP
)
void
LoadParamString
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
char
*
p
,
c
onst
c
har
*
defaultP
)
{
{
char
vname
[
128
];
char
vname
[
128
];
vname
[
0
]
=
'-'
;
vname
[
0
]
=
'-'
;
...
@@ -108,4 +108,4 @@ void ShowParams(int argc, const char ** argv)
...
@@ -108,4 +108,4 @@ void ShowParams(int argc, const char ** argv)
fprintf
(
stderr
,
"
\n
"
);
fprintf
(
stderr
,
"
\n
"
);
}
}
}
}
\ No newline at end of file
source/sample/transformer/T2TUtility.h
查看文件 @
4e8872e9
...
@@ -28,7 +28,7 @@ namespace transformer
...
@@ -28,7 +28,7 @@ namespace transformer
{
{
/* load arguments */
/* load arguments */
void
LoadParamString
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
char
*
p
,
char
*
defaultP
);
void
LoadParamString
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
char
*
p
,
c
onst
c
har
*
defaultP
);
void
LoadParamInt
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
int
*
p
,
int
defaultP
);
void
LoadParamInt
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
int
*
p
,
int
defaultP
);
void
LoadParamBool
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
bool
*
p
,
bool
defaultP
);
void
LoadParamBool
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
bool
*
p
,
bool
defaultP
);
void
LoadParamFloat
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
float
*
p
,
float
defaultP
);
void
LoadParamFloat
(
int
argc
,
const
char
**
argv
,
const
char
*
name
,
float
*
p
,
float
defaultP
);
...
@@ -38,4 +38,4 @@ void ShowParams(int argc, const char ** argv);
...
@@ -38,4 +38,4 @@ void ShowParams(int argc, const char ** argv);
}
}
#endif
#endif
\ No newline at end of file
source/tensor/core/arithmetic/MatrixMul.cpp
查看文件 @
4e8872e9
...
@@ -53,11 +53,29 @@ void _MatrixMul(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
...
@@ -53,11 +53,29 @@ void _MatrixMul(const XTensor * a, MATRIX_TRANS_TYPE transposedA,
const
XTensor
*
b
,
MATRIX_TRANS_TYPE
transposedB
,
const
XTensor
*
b
,
MATRIX_TRANS_TYPE
transposedB
,
XTensor
*
c
,
DTYPE
alpha
,
DTYPE
beta
,
XPRunner
*
parallelRunner
)
XTensor
*
c
,
DTYPE
alpha
,
DTYPE
beta
,
XPRunner
*
parallelRunner
)
{
{
CheckNTErrors
(
(
a
&&
b
&&
c
)
,
"Empty input tensors!"
);
CheckNTErrors
(
a
&&
b
&&
c
,
"Empty input tensors!"
);
CheckNTErrors
(
(
a
->
dataType
==
b
->
dataType
&&
a
->
dataType
==
c
->
dataType
)
,
CheckNTErrors
(
a
->
dataType
==
b
->
dataType
&&
a
->
dataType
==
c
->
dataType
,
"Input tensors should have the same data type!"
);
"Input tensors should have the same data type!"
);
CheckNTErrors
(
(
a
->
order
>=
2
&&
b
->
order
>=
2
&&
c
->
order
>=
2
)
,
CheckNTErrors
(
a
->
order
>=
2
&&
b
->
order
>=
2
&&
c
->
order
>=
2
,
"Input tensors must have a order >= 2!"
);
"Input tensors must have a order >= 2!"
);
CheckNTErrors
(
c
->
order
==
a
->
order
+
b
->
order
-
2
,
"wrong tensor order"
)
/* we transform a higher order tensor to a matrix to kill the number
of calls of matrix multiplication */
if
(
transposedA
==
X_NOTRANS
&&
a
->
order
>
2
&&
b
->
order
==
2
){
int
ncolA
=
a
->
dimSize
[
a
->
order
-
1
];
int
ncolC
=
c
->
dimSize
[
c
->
order
-
1
];
XTensor
*
a2
=
NewTensor2D
(
a
->
unitNum
/
ncolA
,
-
ncolA
,
a
->
dataType
,
a
->
devID
,
a
->
mem
);
XTensor
*
c2
=
NewTensor2D
(
c
->
unitNum
/
ncolC
,
-
ncolC
,
c
->
dataType
,
c
->
devID
,
c
->
mem
);
a2
->
data
=
a
->
data
;
c2
->
data
=
c
->
data
;
_MatrixMul2D
(
a2
,
transposedA
,
b
,
transposedB
,
c2
,
alpha
,
beta
,
parallelRunner
);
a2
->
data
=
NULL
;
c2
->
data
=
NULL
;
delete
a2
;
delete
c2
;
return
;
}
int
an
=
transposedA
==
X_TRANS
?
a
->
dimSizeRDI
[
0
]
:
a
->
dimSizeRDI
[
1
];
int
an
=
transposedA
==
X_TRANS
?
a
->
dimSizeRDI
[
0
]
:
a
->
dimSizeRDI
[
1
];
int
am
=
transposedA
==
X_TRANS
?
a
->
dimSizeRDI
[
1
]
:
a
->
dimSizeRDI
[
0
];
int
am
=
transposedA
==
X_TRANS
?
a
->
dimSizeRDI
[
1
]
:
a
->
dimSizeRDI
[
0
];
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论